如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為 (2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)直接寫出該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個(gè)單位長度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以每秒1個(gè)單位長度的速度從A點(diǎn)出發(fā)沿射線AB勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(t>0),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①填空:當(dāng)0<t≤3時(shí),PN=
-t2+3t
-t2+3t
.(用含t的代數(shù)式表示);
②在運(yùn)動(dòng)的過程中,以P、N、C、D為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)求出此時(shí)t的值,若不能,請(qǐng)說明理由.
③設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最小值?為什么?