(Ⅱ)求證:BC平面. 查看更多

 

題目列表(包括答案和解析)

平面四邊形ABED中,O在線段AD上,且OA=1,OD=2,△OAB,△ODE都是正三角形.將四邊形ABED沿AD翻折后,使點B落在點C位置,點E落在點F位置,且F點在平面ABED上的射影恰為線段OD的中點(即垂線段的垂足點),所得多面體ABEDFC,如圖所示
(1)求棱錐F-OED的體積;             
(2)證明:BC∥EF.

查看答案和解析>>

(2012•即墨市模擬)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F(xiàn)是線段BC的中點.H為PD中點.
(1)證明:FH∥面PAB;
(2)證明:PF⊥FD;
(3)若PB與平米ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=
3
,點F是PB的中點,點E在邊BC上移動.
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)當(dāng)點E為BC的中點時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(Ⅲ)證明:無論點E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

精英家教網(wǎng)如,平面ABEF⊥平面ABCD,四邊形ABEF與ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF

(Ⅰ)證明:C,D,F(xiàn),E四點共面;
(Ⅱ)設(shè)AB=BC=BE,求二面角A-ED-B的大。

查看答案和解析>>

已知平面內(nèi)動點P(x,y)到定點F(1,0)的距離與其到定直線l:x=4的距離之比是
12
,設(shè)動點P的軌跡為M,軌跡M與x軸的負半軸交于點A,過點F的直線交軌跡M于B、C兩點.
(1)求軌跡M的方程;
(2)證明:當(dāng)且僅當(dāng)直線BC垂直于x軸時,△ABC是以BC為底邊的等腰三角形;
(3)△ABC的面積是否存在最值?如果存在,求出最值;如果不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案