23. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

   如圖,在平面直角坐標(biāo)系中,△ABC的A、B兩個頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知,,△ABC的面積,拋物線

經(jīng)過A、B、C三點(diǎn)。

   1.(1)求此拋物線的函數(shù)表達(dá)式;

   2.(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個動點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;

   3.(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分8分)

   某學(xué)校要在圍墻旁建一個長方形的中藥材種植實(shí)習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.

   1.(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;

   2.(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

 

查看答案和解析>>

(本小題滿分1 0分)

如圖,已知線段AB∥CD,AD與B C相交于點(diǎn)K,E是線段AD上一動點(diǎn)。

   1.(1)若BK=KC,求的值;

2.(2)連接BE,若BE平分∠ABC,則當(dāng)AE= AD時,猜想線段AB、BC、CD三者之間有怎樣的等量關(guān)系?請寫出你的結(jié)論并予以證明.再探究:當(dāng)AE=AD(n>2),而其余條件不變時,線段AB、BC、CD三者之間又有怎樣的等量關(guān)系?請直接寫出你的結(jié)論,不必證明.

 

查看答案和解析>>

(本小題滿分1 0分)

如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn)(,8),直線經(jīng)過該反比例函數(shù)圖象上的點(diǎn)Q(4,m).

   1.(1)求上述反比例函數(shù)和直線的函數(shù)表達(dá)式;

   2.(2)設(shè)該直線與x軸、y軸分別相交于A 、B兩點(diǎn),與反比例函數(shù)圖象的另一個交點(diǎn)為P,連結(jié)0P、OQ,求△OPQ的面積.

 

查看答案和解析>>

(本小題滿分8分)

    某市今年的信息技術(shù)結(jié)業(yè)考試,采用學(xué)生抽簽的方式?jīng)Q定自己的考試內(nèi)容。規(guī)定:每位考生先在三個筆試題(題簽分別用代碼表示)中抽取一個,再在三個上機(jī)題(題簽分別用代碼表示)中抽取一個進(jìn)行考試。小亮在看不到題簽的情況下,分別從筆試題和上機(jī)題中隨機(jī)地各抽取一個題簽。

1.(1)用樹狀圖或列表法表示出所有可能的結(jié)構(gòu);

2.(2)求小亮抽到的筆試題和上機(jī)題的題簽代碼的下標(biāo)(例如“”的下表為“1”)均為奇數(shù)的概率。

 

查看答案和解析>>

一、選擇題

1.A 2.B 3.C 4.B 5.B 6.C 7.C 8.A 9.B 10.D 11.B 12.C

二、填空題

13.9  14.  15. BD=CD,OE=OF,DE∥AC等  16.4  17.15

三、解答題

18.

(1)解:   ................................................ 1分

   ...................................................... 2分

  ....................................................... 3分

(2)解:解①得>-2  ................................................ 4分

解②得<3  .................................................. 5分

∴此不等式組的解集是-2<x<3    ................................... 6分

解集在數(shù)軸上表示正確  .............................................. 7分

19.

(1)證明:∵AB∥DE,∴∠B=∠DEF

∵AC∥DF,∴∠F=∠ACB  ............................................ 1分

∵BE=CF,∴BE+EC= CF + EC即BC=EF   ............................... 2分

∴△ABC≌△DEF

∴AB=DE............................. 3分

(2)解:過點(diǎn)O作OG⊥AP于點(diǎn)G

連接OF  ........................... 4分

∵ DB=10,∴ OD=5

∴ AO=AD+OD=3+5=8

∵∠PAC=30°

∴ OG=AO=cm............... 5分

∵ OG⊥EF,∴ EG=GF

∵ GF= 

∴ EF=6cm  ......................... 7分

20.解:組成的所有坐標(biāo)列樹狀圖為:

 

.................... 5分

或列表為:

.................... 5分

方法一:根據(jù)已知的數(shù)據(jù),點(diǎn)不在第二象限的概率為

方法二:1-  ................................................. 8分

21.解:設(shè)康乃馨每支元,水仙花每支元   ............................. 1分

由題意得:    ......................................... 4分

解得:  ..................................................... 6分

第三束花的價格為  ................................ 7分

答:第三束花的價格是17元.   ...................................... 8分

22.解:(1)設(shè)CD為千米,

由題意得,∠CBD=30°,∠CAD=45°

∴AD=CD=x  .................... 1分

在Rt△BCD中,tan30°=

∴ BD=  ................... 2分

AD+DB=AB=40

  ............... 3分

解得 ≈14.7

∴ 牧民區(qū)到公路的最短距離CD為14.7千米.  ......................... 4分

(若用分母有理化得到CD=14.6千米,可得4分)

(2)設(shè)汽車在草地上行駛的速度為,則在公路上行駛的速度為3,

在Rt△ADC中,∠CAD=45°,∴ AC=CD

方案I用的時間........................ 5分

方案II用的時間..................................... 6分

= .................................................... 7分

>0

>0  ...................................................... 8分

∴方案I用的時間少,方案I比較合理  ............................... 9分

23.解:(1)  .......................................... 1分

解得:   .................................................. 2分

∴點(diǎn)P的坐標(biāo)為(2,)  ........................................... 3分

(2)將代入

,即OA=4................................................... 4分

做PD⊥OA于D,則OD=2,PD=2

∵ tan∠POA=

∴ ∠POA=60°   ................................................... 5分

∵ OP=

∴△POA是等邊三角形.  ............ 6分

 

(3)① 當(dāng)0<t≤4時,如圖1

在Rt△EOF中,∵∠EOF=60°,OE=t

∴EF=t,OF=t

∴S=?OF?EF=.............. 7分

當(dāng)4<t<8時,如圖2

設(shè)EB與OP相交于點(diǎn)C

易知:CE=PE=t-4,AE=8-t

∴AF=4-,EF=(8-t)  

∴OF=OA-AF=4-(4-t)=t

∴S=(CE+OF)?EF

=(t-4+t)×(8-t)

=-+4t-8................ 8分

② 當(dāng)0<t≤4時,S=, t=4時,S最大=2

當(dāng)4<t<8時,S=-+4t-8=-(t-)+ 

t=時,S最大=

>2,∴當(dāng)t=時,S最大=........................... 9分

24.解:(1)設(shè)拋物線的解析式為  ......................... 1分

將A(-1,0)代入:       ∴   .................... 2分

∴ 拋物線的解析式為,即:.............. 3分

(2)是定值,  ........................................... 4分

∵ AB為直徑,∴ ∠AEB=90°,∵ PM⊥AE,∴ PM∥BE

∴ △APM∽△ABE,∴  ①

同理:   ②  .............................................. 5分

① + ②: .................................... 6分

(3)∵ 直線EC為拋物線對稱軸,∴ EC垂直平分AB

∴ EA=EB

∵ ∠AEB=90°

∴ △AEB為等腰直角三角形.

∴ ∠EAB=∠EBA=45° ........... 7分

如圖,過點(diǎn)P作PH⊥BE于H,

由已知及作法可知,四邊形PHEM是矩形,

∴PH=ME且PH∥ME

在△APM和△PBH中

∵∠AMP=∠PHB=90°, ∠EAB=∠BPH=45°

∴ PH=BH

且△APM∽△PBH

、.......... 8分

在△MEP和△EGF中,

∵ PE⊥FG,  ∴ ∠FGE+∠SEG=90°

∵∠MEP+∠SEG=90°  ∴ ∠FGE=∠MEP

∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF

    ②

由①、②知:.............................................. 9分

(本題若按分類證明,只要合理,可給滿分)

 

 

 

 

 


同步練習(xí)冊答案