題目列表(包括答案和解析)
!咳艉瘮(shù)在區(qū)間上的圖象為連續(xù)不斷的一條曲線,
則下列說法正確的是( )
A.若,不存在實(shí)數(shù)使得;
B.若,存在且只存在一個(gè)實(shí)數(shù)使得;
C.若,有可能存在實(shí)數(shù)使得;
D.若,有可能不存在實(shí)數(shù)使得;
,總使得成立,則的值為 。
。,輪船位于港口O北偏西且與該港口相距20海里的A處,并以30海里/小時(shí)的航行速度沿正東方向勻速行駛。假設(shè)該小船沿直線方向以海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇。
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向與航行速度的大。,使得小艇能以最短時(shí)間與輪船相遇,并說明理由。
,,為常數(shù),離心率為的雙曲線:上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線:的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線:(為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程
第二問中,為,,,
故直線的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程
(Ⅱ)設(shè)為,,,
故直線的方程為,即,
所以,同理可得:,
即,是方程的兩個(gè)不同的根,所以
由已知易得,即
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com