13.求適合不等式的x的整數(shù)解 查看更多

 

題目列表(包括答案和解析)

已知定義在R上的單調(diào)函數(shù)y=f(x),當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并寫出適合條件的函數(shù)f(x)的一個解析式;
(2)數(shù)列{an}滿足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)
,
①求通項公式an的表達式;
②令bn=(
1
2
)an,Sn=b1+b2+…+bn,Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試比較Sn
4
3
Tn
的大小,并加以證明;
③當a>1時,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
對于不小于2的正整數(shù)n恒成立,求x的取值范圍.

查看答案和解析>>

已知定義在R上的單調(diào)函數(shù)y=f(x),當x<0時,f(x)>1,且對任意的實數(shù)x,y=∈R,有f(x+y)=f(x)f(y),

(1)

求f(0),并寫出適合條件的函數(shù)f(x)的一個解析式;

(2)

解:數(shù)列{an}滿足a1=f(0)且,

①求通項公式an的表達式;

②令試比較的大小,并加以證明;

③當a>1時,不等式對于不小2的正整數(shù)n恒成立,求x的取值范圍.

查看答案和解析>>


同步練習冊答案