題目列表(包括答案和解析)
(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?
(本小題滿分13分)
為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(Ⅰ)第二小組的頻率是多少?樣本容量是多少?
(Ⅱ)若次數(shù)在110以上(含110次)為達標(biāo),試估計該學(xué)校全體高一學(xué)生的達標(biāo)率是多少?(Ⅲ)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)、眾數(shù)各是是多少?(精確到0.1)
(本小題滿分12分)
編號為的16名籃球運動員在某次訓(xùn)練比賽中的得分記錄如下:
運動員編號 |
||||||||
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
運動員編號 |
||||||||
得分 |
17 |
26 |
25 |
33 |
22 |
12 |
31 |
38 |
(Ⅰ)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;
區(qū)間 |
|||
人數(shù) |
|
|
|
(Ⅱ)從得分在區(qū)間內(nèi)的運動員中隨機抽取2人,
(i)用運動員的編號列出所有可能的抽取結(jié)果;
(ii)求這2人得分之和大于50的概率.
(本小題滿分12分)
編號分別為的16名籃球運動員在某次比賽中得分記錄如下;
編號 |
A1 |
A2 |
A3 |
A4 |
A5 |
A6 |
A7 |
A8 |
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
編號 |
A9 |
A10 |
A11 |
A12 |
A13 |
A14 |
A15 |
A16 |
得分 |
17 |
26 |
25 |
33 |
22 |
12 |
31 |
38 |
(Ⅰ)將得分在對應(yīng)區(qū)間的人數(shù)填入相應(yīng)的空格內(nèi):
區(qū) 間 |
|||
人 數(shù) |
|
|
|
(Ⅱ)從得分在區(qū)間內(nèi)的運動員中隨機抽取2人.
(1)用運動員編號列出所有可能的抽取結(jié)果;
(2)求這兩人得分之和大于50的概率.
(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?
一、填空題
1. ; 2.; 3.; 4.; 5.;
6.; 7.; 8.3; 9.. 10.
11.; 12.; 13.; 14..
二、解答題
15.解:(1)由得:
,
由正弦定理知: ,
(2),
由余弦定理知:
16.解:(Ⅰ)證明:取的中點,連接
因為是正三角形,
所以
又是正三棱柱,
所以面,所以
所以有面
因為面
所以;
(Ⅱ)為的三等分點,.
連結(jié),,
∵ ,∴ .
∴ , ∴
又∵面,面
∴ 平面
17.解 (Ⅰ)設(shè)點P的坐標(biāo)為(x,y),由P(x,y)在橢圓上,得
又由知,
所以
(Ⅱ) 當(dāng)時,點(,0)和點(-,0)在軌跡上.
當(dāng)且時,由,得.
又,所以T為線段F2Q的中點.
在△QF
綜上所述,點T的軌跡C的方程是
(Ⅲ) C上存在點M()使S=的充要條件是
由③得,由④得 所以,當(dāng)時,存在點M,使S=;
當(dāng)時,不存在滿足條件的點M.
當(dāng)時,,
由,
,
,得
18.解:(1)(或)()
(2)
當(dāng)且僅當(dāng),即V=
所以,博物館支付總費用的最小值為7500元.
(3)解法1:由題意得不等式:
當(dāng)保護罩為正四棱錐形狀時,,代入整理得:,解得;
當(dāng)保護罩為正四棱柱形狀時,,代入整理得:,解得
又底面正方形面積最小不得少于,所以,底面正方形的面積最小可取
解法2. 解方程,即得兩個根為
由于函數(shù)在上遞減,在上遞增,所以當(dāng)時,總費用超過8000元,所以V取得最小值
由于保護罩的高固定為
又底面正方形面積最小不得少于,,所以,底面正方形的面積最小可取
19.解:(Ⅰ)令得
當(dāng)為增函數(shù);
當(dāng)為減函數(shù),
可知有極大值為
(Ⅱ)欲使在上恒成立,只需在上恒成立,
設(shè)
由(Ⅰ)知,,
(Ⅲ),由上可知在上單調(diào)遞增,
①,
同理 ②
兩式相加得
20.解:(1)證明:因為
所以即
可化為:
當(dāng)且僅當(dāng)即時
故
(2)因為
=
=
又由可知 =
即 =
解之得
故得所以
因此的通項公式為..
(3)解:
所以
即S的最大值為
三、附加題
∵ÐDEF是公共角,
∴ΔDEF∽ΔCED. ∴ÐEDF=ÐC.
∵CD∥AP, ∴ÐC=Ð P.
∴ÐP=ÐEDF.
(2)∵ÐP=ÐEDF, ÐDEF=ÐPEA,
∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.
∵弦AD、BC相交于點E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.
21B.法一:特殊點法
在直線上任取兩點(2、1)和(3、3),…………1分
則?即得點 …………3 分
即得點
將和分別代入上得
則矩陣 …………6 分
則 …………10 分
法二:通法
設(shè)為直線上任意一點其在M的作用下變?yōu)?sub>…………1分
則…………3分
代入得:
其與完全一樣得
則矩陣 …………6分
則 …………10分
, ………6分
設(shè)動點P,M,則 , ………8分
又 ,得; ………10分
法二:以極點為坐標(biāo)原點建立直角坐標(biāo)系,
將直線方程化為,………………4分
設(shè)P,M,,………6分
又MPO三點共線,, …………8分
轉(zhuǎn)化為極坐標(biāo)方程. ………10分
21D.證明: ∵a、b、c均為實數(shù).
∴(+)≥≥,當(dāng)a=b時等號成立;
(+)≥≥,當(dāng)b=c時等號成立;
(+)≥≥.
三個不等式相加即得++≥++,
當(dāng)且僅當(dāng)a=b=c時等號成立.
22.解:(I)以O(shè)為原點,OB,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系.
則有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).
cos<>.
由于異面直線BE與AC所成的角是銳角,故其余弦值是.
(II),,
設(shè)平面ABE的法向量為,
則由,,得
取n=(1,2,2),
平面BEC的一個法向量為n2=(0,0,1),
.
由于二面角A-BE-C的平面角是n1與n2的夾角的補角,其余弦值是-.
23.解:的所有可能取值有6,2,1,-2;,
,
故的分布列為:
6
2
1
-2
0.63
0.25
0.1
0.02
(2)
(3)設(shè)技術(shù)革新后的三等品率為,則此時1件產(chǎn)品的平均利潤為
依題意,,即,解得 所以三等品率最多為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com