18 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):

                       男             女

                               15    7  7  8  9  9  9

9  8   16    0  0  1  2  4  5  8  9

8  6  5  0   17    2  5  6

7  4  2  1   18    0 

1  0   19

若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?

(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?

 

查看答案和解析>>

(本小題滿分12分)

編號為的16名籃球運(yùn)動員在某次訓(xùn)練比賽中的得分記錄如下:

運(yùn)動員編號

得分

15

35

21

28

25

36

18

34

運(yùn)動員編號

得分

17

26

25

33

22

12

31

38

(Ⅰ)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;

區(qū)間

人數(shù)

 

 

 

(Ⅱ)從得分在區(qū)間內(nèi)的運(yùn)動員中隨機(jī)抽取2人,

(i)用運(yùn)動員的編號列出所有可能的抽取結(jié)果;

(ii)求這2人得分之和大于50的概率.

 

查看答案和解析>>

(本小題滿分12分)

為調(diào)查某市學(xué)生百米運(yùn)動成績,從該市學(xué)生中按照男女生比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測試,學(xué)生成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組,第二組……第五組,如圖是按上述分組方法得到的頻率分布直方圖,根據(jù)有關(guān)規(guī)定,成績小于16秒為達(dá)標(biāo).

(Ⅰ)用樣本估計(jì)總體,某班有學(xué)生45人,設(shè)為達(dá)標(biāo)人數(shù),求的數(shù)學(xué)期望與方差;

(Ⅱ)如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女生達(dá)標(biāo)情況如右表:

根據(jù)表中所給的數(shù)據(jù),能否有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個更好的解決方法來?

附:   

 

 

性別

是否

達(dá)標(biāo)

合計(jì)

達(dá)標(biāo)

_____

_____

不達(dá)標(biāo)

___

_____

合計(jì)

______

______

 

 

查看答案和解析>>

(本小題滿分12分)

某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:每一組;第二組……第五組.下圖是按上述分組方法得到的頻率分布直方圖.

(I)若成績大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測試中成績良好的人數(shù);

(II)設(shè)、表示該班某兩位同學(xué)的百米測試成績,且已知.

求事件“”的概率.

 

 

查看答案和解析>>

(本小題滿分12分)

為調(diào)查某市學(xué)生百米運(yùn)動成績,從該市學(xué)生中按照男女生比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測試,學(xué)生成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組,第二組……第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)求這組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.1);

( II )根據(jù)有關(guān)規(guī)定,成績小于16秒為達(dá)標(biāo).

(ⅰ)用樣本估計(jì)總體,某班有學(xué)生45人,設(shè)

為達(dá)標(biāo)人數(shù),求的數(shù)學(xué)期望與方差.

    (ⅱ)如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女

生達(dá)標(biāo)情況如下表

性別

是否達(dá)標(biāo)

合計(jì)

達(dá)標(biāo)

______

_____

不達(dá)標(biāo)

_____

_____

合計(jì)

______

______

 

根據(jù)上表數(shù)據(jù),能否有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個更好的解決方法來?

 

查看答案和解析>>

一、填空題

1. ;   2.;   3.;   4.;    5.;

6.;      7.;   8.3;    9..   10.

11.;   12.;  13.;      14.

二、解答題

15.解:(1)由得:

由正弦定理知:  ,

(2),

由余弦定理知:

16.解:(Ⅰ)證明:取的中點(diǎn),連接

因?yàn)?sub>是正三角形,

所以

是正三棱柱,

所以,所以

所以有

因?yàn)?sub>

所以;

(Ⅱ)的三等分點(diǎn),

連結(jié),

,∴

, ∴

又∵,

平面

17.解 (Ⅰ)設(shè)點(diǎn)P的坐標(biāo)為(x,y),由P(x,y)在橢圓上,得

又由

所以

   (Ⅱ) 當(dāng)時,點(diǎn)(,0)和點(diǎn)(-,0)在軌跡上.

當(dāng)時,由,得

,所以T為線段F2Q的中點(diǎn).

在△QF1F2中,,所以有

綜上所述,點(diǎn)T的軌跡C的方程是

(Ⅲ) C上存在點(diǎn)M()使S=的充要條件是

由③得,由④得  所以,當(dāng)時,存在點(diǎn)M,使S=;

當(dāng)時,不存在滿足條件的點(diǎn)M.

當(dāng)時,,

,

,

,得

18.解:(1)(或)(

(2)

當(dāng)且僅當(dāng),即V=4立方米時不等式取得等號

所以,博物館支付總費(fèi)用的最小值為7500元.

(3)解法1:由題意得不等式:

當(dāng)保護(hù)罩為正四棱錐形狀時,,代入整理得:,解得

當(dāng)保護(hù)罩為正四棱柱形狀時,,代入整理得:,解得

又底面正方形面積最小不得少于,所以,底面正方形的面積最小可取1.4平方米

解法2. 解方程,即得兩個根為

由于函數(shù)上遞減,在上遞增,所以當(dāng)時,總費(fèi)用超過8000元,所以V取得最小值 

由于保護(hù)罩的高固定為2米,所以對于相等體積的正四棱錐與正四棱柱,正四棱柱的底面積是正四棱錐底面積的.所以當(dāng)保護(hù)罩為正四棱柱時,保護(hù)罩底面積最小, m2 

又底面正方形面積最小不得少于,所以,底面正方形的面積最小可取1.4平方米

19.解:(Ⅰ)

當(dāng)為增函數(shù);

當(dāng)為減函數(shù),

可知有極大值為

(Ⅱ)欲使上恒成立,只需上恒成立,

設(shè)

由(Ⅰ)知,,

(Ⅲ),由上可知上單調(diào)遞增,

  ①,

 同理  ②

兩式相加得

 

20.解:(1)證明:因?yàn)?sub>

所以

可化為:

當(dāng)且僅當(dāng)

 

(2)因?yàn)?sub>

 =

 =

又由可知 =

=

解之得  

故得所以

因此的通項(xiàng)公式為..

   (3)解:

所以

即S的最大值為

三、附加題

21A.(1)∵DE2=EF?EC,∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

     ∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.

21B.法一:特殊點(diǎn)法

在直線上任取兩點(diǎn)(2、1)和(3、3),…………1分

?即得點(diǎn)  …………3 分

即得點(diǎn)

分別代入上得

則矩陣 …………6 分

     …………10 分

法二:通法

設(shè)為直線上任意一點(diǎn)其在M的作用下變?yōu)?sub>…………1分

…………3分

代入得:

其與完全一樣得

則矩陣         …………6分

           …………10分

21C法一:將直線方程化為,    ………4分

,                       ………6分

設(shè)動點(diǎn)P,M,則 ,    ………8分

,得;                        ………10分

法二:以極點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,

將直線方程化為,………………4分

設(shè)P,M,………6分

又MPO三點(diǎn)共線,, …………8分

轉(zhuǎn)化為極坐標(biāo)方程.   ………10分

21D.證明:  ∵a、bc均為實(shí)數(shù).

)≥,當(dāng)a=b時等號成立;

)≥,當(dāng)b=c時等號成立;

)≥

三個不等式相加即得++++

當(dāng)且僅當(dāng)a=b=c時等號成立.

22.解:(I)以O(shè)為原點(diǎn),OB,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系.

則有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).

 cos<>

由于異面直線BE與AC所成的角是銳角,故其余弦值是

(II),,

設(shè)平面ABE的法向量為,

則由,得

取n=(1,2,2),

平面BEC的一個法向量為n2=(0,0,1),

由于二面角A-BE-C的平面角是n1與n2的夾角的補(bǔ)角,其余弦值是-

23.解:的所有可能取值有6,2,1,-2;,

,

的分布列為:

6

2

1

-2

0.63

0.25

0.1

0.02

 

(2)

(3)設(shè)技術(shù)革新后的三等品率為,則此時1件產(chǎn)品的平均利潤為

依題意,,即,解得 所以三等品率最多為

 


同步練習(xí)冊答案