因為l將矩形OABC分成面積相等的兩部分.所以l過點. 查看更多

 

題目列表(包括答案和解析)

精英家教網
如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以OD、OC為長、短半軸,CD是橢圓在矩形內部的橢圓弧.已知直線l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以OD、OC為長、短半軸的橢圓在矩形及其內部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

(15分)在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a. 分別以OD、OC為長、短半軸的橢圓在矩形及其內部的部分為橢圓弧CD. 直線ly=-x+b與橢圓弧相切,與AB交于點E.

(1)求證:

(2)設直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;

(3)在(2)的條件下,設圓M在矩形及其內部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>


如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以OD、OC為長、短半軸,CD是橢圓在矩形內部的橢圓弧.已知直線l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以OD、OC為長、短半軸的橢圓在矩形及其內部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>


同步練習冊答案