1.求下列各式的值: (1) (2) (3) (4) 解:(1) (2) (3) (4) 查看更多

 

題目列表(包括答案和解析)

設(shè),求下列各式的值:

(Ⅰ) ;   (Ⅱ);   (Ⅲ).

【解析】本試題主要考查了二項式定理的運用。第一問中利用賦值的思想,令x=0,得到

第二問中,利用令x=1,得到

第三問中,利用令x=1/2,得到

解:(1)令x=0,得到;

 (2)令x=1,得到

 

(3)令x=1/2,得到

 

查看答案和解析>>

已知,求下列各式的值:

(1) 

(2)

【解析】本試題主要考查了同角三角函數(shù)關(guān)系式的運用。第一問中利用將分子分母同時除以得,原式=第二問中,構(gòu)造分式表達式,原式= =  =

 

查看答案和解析>>

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對此班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 5
女生 10
合計 50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為
3
5

(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)已知喜愛打籃球的10位女生中,A1,A2,A3,A4,A5還喜歡打羽毛球,B1,B2,B3還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

為了解某班學(xué)生喜愛打羽毛球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打羽毛球 不喜愛打羽毛球 合計
男生
20
20
5
25
25
女生 10
15
15
25
25
合計
合計
30
30
20
20
50
已知在全部50人中隨機抽取1人抽到不喜愛打羽毛球的學(xué)生的概率
2
5

(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打羽毛球與性別有關(guān)?說明你的理由;
(3)已知喜愛打羽毛球的10位女生中,A1,A2還喜歡打籃球,B1,B2還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進行其他方面的調(diào)查,求女生B1和C1不全被選中的概率.下面的臨界值表供參考:
P(Χ2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)

查看答案和解析>>

為了解大學(xué)生觀看某電視節(jié)目是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人
  喜歡看該節(jié)目 不喜歡看該節(jié)目 合計
女生   5  
男生 10    
合計     50
(Ⅰ) 請將上面的列聯(lián)表補充完整;
(Ⅱ) 在犯錯誤的概率不超過0.005的情況下認為喜歡看該節(jié)目節(jié)目與性別是否有關(guān)?說明你的理由;
( III) 已知喜歡看該節(jié)目的10位男生中,A1、A2、A3、A4、A5還喜歡看新聞,B1、B2、B3還喜歡看動畫片,C1、C2還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
P(K2≥K) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>


同步練習冊答案