3.在正四面體中.二面角的余弦值為 查看更多

 

題目列表(包括答案和解析)

(08年重慶一中一模理)在正四面體中,二面角的余弦值為(  )

(A)    (B)    (C)    (D)

查看答案和解析>>

正方體,的中點.

(1)請在線段上確定一點F使四點共面,并加以證明;

(2)求二面角的平面角的余弦值;

(3)點M在面內,且點M在平面上的射影恰為的重心,求異面直線所成角的余弦值.

 

 

查看答案和解析>>

正方體,的中點.
(1)請在線段上確定一點F使四點共面,并加以證明;
(2)求二面角的平面角的余弦值;
(3)點M在面內,且點M在平面上的射影恰為的重心,求異面直線所成角的余弦值.

查看答案和解析>>

精英家教網如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=2a,M、N分別是棱BB1,DD1的中點.
①求異面直線A1M與B1C所成的角的余弦值;
②若正四棱柱ABCD-A1B1C1D1的體積為V,三棱錐N-A1B1C1的體積為V1,求
V1V
的值.
③求平面A1MC1與平面B1NC1所成的二面角的大。

查看答案和解析>>

如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=2a,M、N分別是棱BB1,DD1的中點.
①求異面直線A1M與B1C所成的角的余弦值;
②若正四棱柱ABCD-A1B1C1D1的體積為V,三棱錐N-A1B1C1的體積為V1,求數學公式的值.
③求平面A1MC1與平面B1NC1所成的二面角的大。

查看答案和解析>>

一、DDBCD  CABCA

二、11.1;       12.;     13.           14.;    15.;

16.

三.解答題(本大題共6小題,共76分)

17.解:(1)法一:由題可得;

法二:由題,

,從而;

法三:由題,解得,

,從而。

(2),令,

,

單調遞減,

,

從而的值域為。

18.解:(1)的可能取值為0,1,2,3,4,

,

,。

因此隨機變量的分布列為下表所示;

0

1

2

3

4

(2)由⑴得:,

19.法一:(1)連接,設,則。

因為,所以,故,從而

。

又因為,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為

(2)連接,因為此時分別為的中點,

,所以均為直角三角形,

從而,所以即為直線與平面所成的角。

因為,所以即為所求;

(3)因,又,所以

,故三棱錐的表面積為

。

因為三棱錐的體積,

所以。

法二:(1)因,故。

,則

所以,

當且僅當取等號。此時邊的中點。

故當的中點時,的長度最小,其值為

(2)因,又,所以。

點到平面的距離為

,故,解得。

,故;

(3)同“法一”。

法三:(1)如圖,以為原點建立空間直角坐標系,設,則,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為;

(2)設為面的法向量,因

。取,得。

又因,故。

因此,從而,

所以;

(3)由題意可設為三棱錐的內切球球心,

,可得。

與(2)同法可得平面的一個法向量

,故,

解得。顯然,故。

20.解:(1)當時,。令,

故當單調遞增;

,單調遞減。

所以函數的單調遞增區(qū)間為,

單調遞減區(qū)間為;

(2)法一:因,故。

,

要使對滿足的一切成立,則

解得;

法二:,故

可解得。

因為單調遞減,因此單調遞增,故。設,

,因為,

所以,從而單調遞減,

。因此,即。

(3)因為,所以

對一切恒成立。

,令,

。因為,所以,

單調遞增,有。

因此,從而。

所以。

21.解:(1)設,則由題,

,故。

又根據可得,

,代入可得,

解得(舍負)。故的方程為

(2)法一:設,代入,

,

從而

因此。

法二:顯然點是拋物線的焦點,點是其準線上一點。

的中點,過分別作的垂線,垂足分別為

。

因此以為直徑的圓與準線切(于點)。

重合,則。否則點外,因此。

綜上知

22.證明:(1)因,故

顯然,因此數列是以為首項,以2為公比的等比數列;

(2)由⑴知,解得;

(3)因為

所以

(當且僅當時取等號),

。

綜上可得。(亦可用數學歸納法)

 


同步練習冊答案