題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:,設,
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題:本大題共10小題,每小題5分,共50分。
1.C 2.D 3.A 4.C 5.A 6.D 7.D 8.B 9.C 10.B
二、填空題:本答題共6小題,每小題4分,共24分。
11.= 22 12. 13.594 14.m=
15. 16.1,3
三、解答題:本大題共6小題,共76分。
17.(本小題滿分12分)
解:(1)將函數(shù)(ω>0)的圖象按向量平移,平移后的圖象所對應的解析式為,由圖象知,,所以.
∴所求解析式為 (6分)
(2)∵sin(2α+)=sin2α?cos+cos2αsin=sinαcosα+(cos2α-sin2α)
== (10分)
將tanα=代入得
sin(2α+)== (12分)
另解:由tanα=得:cosα=,sinα=。? (10分)
∴sin(2α+)=sin2α?cos+cos2α?sin=sinαcosα+ (2cos2α-1)= = (12分)
18.(本小題滿分12分)
解:設開關JA,JB ,JC ,JD 能夠閉合的事件依次為A、B、C、D,則P(A)=P(D)=0.7,P(B)=P(C)=0.8
(1)P(B?C)=P(B)? P(c)=0.8×0.8=0.64 (6分)
(2)JA不能工作的概率為
JD不能工作的概率為 (8分)
(10分)
所以整條線路能正常工作的概率為0.9676 (12分)
答:9月份這段線路能正常工作的概率為0.9676。 (14分)
19.(本小題滿分12分)
解:(1)∵CF⊥平面ABC,∴AC是AF在平面ABC的射影
∵△ABC為邊長是的等邊三角形,M為AC中點
∴BM⊥AC,
∴AF⊥BM (3分)
(2)延長FE、CB交于一點N,則AN是平面AEF與平面ABC的交線
∵BE⊥平面ABC, CF⊥平面ABC
∴BE∥CF,∵CF=AB = 2BE,∴BE是△FCN的中位線B是CN的中點,
∴AN∥BM, AN⊥AC
∴AN⊥FA,∴∠FAC為所求二面角的平面角 (6分)
∵CF=AC, ∴∠FAC=45° (7分)
(3)V=VF-CAN-VE-ABN (9分)
=×a-2a×a×sin1200× (11分)
=-= (12分)
注:第(2)問利用指明S/,S也可;第(3)問可用分割的方法,相應給分。
20.(本小題滿分12分)
解(1)∵f′(x)=-x2+4ax-3a2=-(x-3a)(x-a),由f′(x)>0得:a<x<3a
由f′(x)<0得,x<a或x>3a,
則函數(shù)f(x)的單調遞增區(qū)間為(a,3a),單調遞減區(qū)間為(-∞,a)和(3a,+∞)列表如下:
X
(-∞,a)
a
(a, 3a)
3a
(3a,+ ∞)
f′(x)
―
0
+
0
―
f(x)
ㄋ
-a3+b
ㄊ
b
ㄋ
∴函數(shù)f(x)的極大值為b,極小值為-a3+b (6分)
(2)上單調遞減,
因此
∵不等式|f′(x)|≤a恒成立,
即a的取值范圍是 (12分)
21.(本小題滿分14分)
(1)由,得, (2分)
, (4分)
又成等差數(shù)列,
(5分)
即:
即:,解之得:或, (6分)
經檢驗,是增根,∴. (7分)
(2)證明:
(9分)
時等號成立 (10分)
此時
即:。 (14分)
22.(本小題滿分14分)
解(1)由雙曲線C:知F(2,0), 第一、三象限的漸近線:
設點P,∵FP⊥,∴,∴x=,∴P, A
,,∴=
(2)由得:,
設,,M、N的中點為H
則,
,,,
即H,
則線段MN的垂直平分線為:,
將點B(0,-1),的坐標代入,化簡得:,
則由得:,解之得或,
又,所以,
故m的取值范圍是。
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com