1.集合{x| - x = 0 }的所有子集的個數(shù)為 查看更多

 

題目列表(包括答案和解析)

集合A={x|x2-2x-1=0,xR}的所有子集的個數(shù)為

A.4                              B.3                              C.2                              D.1

查看答案和解析>>

設(shè)集合Sn={1,2,3…n},若X是Sn的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.
(Ⅰ) 寫出S4的所有奇子集;
(Ⅱ) 求證:Sn的奇子集與偶子集個數(shù)相等;
(Ⅲ)求證:當(dāng)n≥3時,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

設(shè)集合Sn={1,2,3,,n),若XSn的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱XSn的奇(偶)子集.

I)寫出S4的所有奇子集;

(Ⅱ)求證:Sn的奇子集與偶子集個數(shù)相等;

(Ⅲ)求證:當(dāng)n3時,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

 

查看答案和解析>>

設(shè)集合Sn={1,2,3,,n),若X是Sn的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.
(I)寫出S4的所有奇子集;
(Ⅱ)求證:Sn的奇子集與偶子集個數(shù)相等;
(Ⅲ)求證:當(dāng)n≥3時,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

設(shè)集合Sn={1,2,3,,n),若X是Sn的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.
(I)寫出S4的所有奇子集;
(Ⅱ)求證:Sn的奇子集與偶子集個數(shù)相等;
(Ⅲ)求證:當(dāng)n≥3時,Sn的所有奇子集的容量之和等于所有偶子集的容量之和.

查看答案和解析>>

必修

一、填空題

1、8  2、  3、2|P|  4、  5、向左移,在把各點(diǎn)的橫坐標(biāo)伸長到原來的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答題

15.解:(Ⅰ).………… 4分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2時,.     ………………… 4分

n=1時,,適合上式,

.               ………………… 5分

(Ⅱ),.          ………………… 8分

∴數(shù)列是首項為4、公比為2的等比數(shù)列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1時,的最大值為20200,=10時,的最小值為12100。

19、⑴易知AB恒過橢圓的右焦點(diǎn)F(,0)    ⑵ S=       ⑶存在。

20、⑴

⑶(,

附加題選修參考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值為2和3 ,對應(yīng)的特征向量分別為

,橢圓在矩陣的作用下對應(yīng)得新方程為

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步練習(xí)冊答案