16.已知數(shù)列{f(n)}的前n項(xiàng)和為.且,}的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{f(n)}的前n項(xiàng)和為Sn,且Sn=n2+2n。
(1)求數(shù)列{f(n)}的通項(xiàng)公式;
(2)若a1=f(1),an+1=f(an)(n∈N*),求證:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的前n項(xiàng)和Tn。

查看答案和解析>>

已知數(shù)列{f(n)}的前n項(xiàng)和為Sn,且Sn=n2+2n.

(1)求數(shù)列{f(n)}通項(xiàng)公式;

(2)若a1=f(1),an+1=f(an)(n∈N*),求證數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大。

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與
6n2-3n的大。

查看答案和解析>>

已知數(shù)列{an}中,前n項(xiàng)和為Sn,點(diǎn)(an+1,Sn+1)在直線y=4x-2,其中n=1,2,3…,
(Ⅰ)設(shè)bn=an+1-2an,且a1=1,求證數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1)并比較f′(1)與6n2-3n的大。

查看答案和解析>>

必修

一、填空題

1、8  2、  3、2|P|  4、  5、向左移,在把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答題

15.解:(Ⅰ).………… 4分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2時(shí),.     ………………… 4分

n=1時(shí),,適合上式,

.               ………………… 5分

(Ⅱ),.          ………………… 8分

∴數(shù)列是首項(xiàng)為4、公比為2的等比數(shù)列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1時(shí),的最大值為20200,=10時(shí),的最小值為12100。

19、⑴易知AB恒過(guò)橢圓的右焦點(diǎn)F(,0)    ⑵ S=       ⑶存在。

20、⑴

⑶(,

附加題選修參考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值為2和3 ,對(duì)應(yīng)的特征向量分別為,

,橢圓在矩陣的作用下對(duì)應(yīng)得新方程為

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步練習(xí)冊(cè)答案