題目列表(包括答案和解析)
設(shè)函數(shù)的圖象與直線相切于.
(1)求在區(qū)間上的最大值與最小值;
(2)是否存在兩個不等正數(shù),當(dāng)時,函數(shù)的值域也是,若存在,求出所有這樣的正數(shù);若不存在,請說明理由;
(3)設(shè)存在兩個不等正數(shù),當(dāng)時,函數(shù)的值域是,求正數(shù)的取值范圍.
設(shè)函數(shù)的圖象與直線相切于.
(1)求在區(qū)間上的最大值與最小值;
(2)是否存在兩個不等正數(shù),當(dāng)時,函數(shù)的值域也是,若存在,求出所有這樣的正數(shù);若不存在,請說明理由;
(3)設(shè)存在兩個不等正數(shù),當(dāng)時,函數(shù)的值域是,求正數(shù)的取值范圍.
命題
①函數(shù)的圖象與直線最多有一個交點;
②函數(shù)在區(qū)間上單調(diào)遞增,則;
③若,當(dāng)時,,則;
④函數(shù)的值域為R,則實數(shù)的取值范圍是;
⑤函數(shù)與的圖象關(guān)于軸對稱;
以上命題正確的個數(shù)有( )個
A、2 B、3 C、4 D、5
命題①函數(shù)的圖象與直線最多有一個交點;
②函數(shù)在區(qū)間上單調(diào)遞增,則;
③若,當(dāng)時,,則;
④函數(shù)的值域為R,則實數(shù)的取值范圍是;
A. 1 B. 2 C. 3 D. 4
A.1 | B. 2 | C. 3 | D. 4 |
一.1-5 ACDAD 6-10 DBDAB 11-12 BA
13. 28 14. 15. 1 16. ⑴⑵⑷
17. 解:(1)∵,……………………………………………(2分)
∴
……………(3分)
∴當(dāng)()時,
最小正周期為……………………………………………(5分)
(2)∵
∴……………………………………………(8分)
∴…………(10分)
18.解法一:證明:連結(jié)OC,
∴. ----------------------------------------------------------------------------------1分
,,
∴ . ------------------------------------------------------2分
在中,
∴即 ------------------3分
面. ----------------------------4分
(II)過O作,連結(jié)AE,
,
∴AE在平面BCD上的射影為OE.
∴.
∴ . -----------------------------------------7分
在中,,,,
∴.∴二面角A-BC-D的大小為. -------8分
(III)解:設(shè)點O到平面ACD的距離為
,
∴.
在中, ,
.
而,∴.
∴點O到平面ACD的距離為.-----------------------------------------------------12分
解法二:(I)同解法一.(II)解:以O(shè)為原點,如圖建立空間直角坐標(biāo)系,
則
,
∴. ------------6分
設(shè)平面ABC的法向量,
,,
由.
設(shè)與夾角為,則.
∴二面角A-BC-D的大小為. --------------------8分
(III)解:設(shè)平面ACD的法向量為,又,
. -----------------------------------11分
設(shè)與夾角為,
則 - 設(shè)O 到平面ACD的距離為h,
∵,∴O到平面ACD的距離為. ---------------------12分
19.解:(Ⅰ)記“廠家任取4件產(chǎn)品檢驗,其中至少有1件是合格品”為事件A
用對立事件A來算,有………3分
(Ⅱ)可能的取值為
,,………
………………9分
記“商家任取2件產(chǎn)品檢驗,都合格”為事件B,則商家拒收這批產(chǎn)品的概率
所以商家拒收這批產(chǎn)品的概率為………………….12分
20. (1)當(dāng) (1分)
為首項,2為公比的等比例數(shù)列。(6分)
(2)得 (7分)
。(11分)
12分
21解(I)設(shè)
(Ⅱ)(1)當(dāng)直線的斜率不存在時,方程為
…………(4分)
(2)當(dāng)直線的斜率存在時,設(shè)直線的方程為,
設(shè),
,得
…………(6分)
…………………8分
注意也可用..........12分
22. 解:(1)因為 所以
依題意可得,對恒成立,
所以 對恒成立,
所以 對恒成立,,即
(2)當(dāng)時,若,,單調(diào)遞減;
若單調(diào)遞增;
故在處取得極小值,即最小值
又
所以要使直線與函數(shù)的圖象在上有兩個不同交點,
實數(shù)的取值范圍應(yīng)為,即(;
(3)當(dāng)時,由可知,在上為增函數(shù),
當(dāng)時,令,則,故,
所以。
故
相加可得
又因為
所以對大于1的任意正整書
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com