題目列表(包括答案和解析)
(本小題滿分14分)
已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).(1)判斷函數(shù)f(x)在上的單調(diào)性;(2)是否存在實(shí)數(shù),使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直? 若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.(3)若實(shí)數(shù)m,n滿足m>0, n>0,求證:nnem≥mnen.
(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).
(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).
(本小題滿分14分)
已知函數(shù)f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)當(dāng)b=0時(shí),若對(duì)x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求實(shí)數(shù)k的取值范圍;
(2)設(shè)h(x)的圖象為函數(shù)f (x)和g(x)圖象的公共切線,切點(diǎn)分別為(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求證:x1>1>x2;
②若當(dāng)x≥x1時(shí),關(guān)于x的不等式ax2-x+xe+1≤0恒成立,求實(shí)數(shù)a的取值范圍.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com