題目列表(包括答案和解析)
(1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進
行思考。
在圖(1)中,作斜邊AB上的高CD,由于∠B=30°,可知c=2b,于是AD=,
BD=c-。由于△CDB∽△ACB,可知=,即a2=c·BD。
同理b2=c·AD。于是a2-b2=c(BD-AD)=c[(c-)-]=c(c-b)
=c(2b-b)
=bc。對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故有a
這兩塊三角尺都具有性質(zhì)a2-b2=bc。
在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們就稱這種三角形為倍角三角
形。兩塊三角尺就都是特殊的倍角三角形。對于任意的倍角三角形,上面的性質(zhì)仍然
成立嗎?暫時把我們的設想作為一個猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc。
在上述由三角尺的性質(zhì)到猜想這一認識過程中,用到了下列四種數(shù)學思想方法中的哪
一種?選出一個正確的并將其序號填在括號內(nèi)………………………………………( )
①分類的思想方法 ②轉(zhuǎn)化的思想方法 ③由特殊到一般的思想方法 ④數(shù)形結(jié)合的
思想方法
(2)這個猜測是否正確?請證明。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com