解:∵四邊形ABCD是正方形. ∴ AD=CD ,∠A=∠DCF=900 又∵DF⊥DE. ∴∠1+∠3=∠2+∠3 ∴∠1=∠2 在Rt△DAE和Rt△DCE中. ∠1=∠2 AD=CD ∠A=∠DCF ∴Rt△DAERt△DCE ∴DE=DF. 查看更多

 

題目列表(包括答案和解析)

先閱讀下面的題目及解題過程,再根據(jù)要求回答問題。
如圖所示,在ABCD中,∠BAD的平分線與BC邊相交于點E,∠ABC的平分線與AD邊相交于點F,AE與BF相交于O,試說明四邊形ABEF是菱形。
 解:①∵四邊形ABCD是平行四邊形,
        ②∴AD∥BC,
        ③∠ABE+∠BAF=180。
        ④∵AE,BF分別是∠BAF,∠ABE的平分線,
         ⑤∴∠1=∠2=∠BAF,∠3=∠4=∠ABE, 
        ⑥∴∠1+∠3=(∠BAF+∠ABE)=90。
          
 ⑦∴∠AOB=90
          
 ⑧∴AE⊥BF
         ⑨∴四邊形ABEF是菱形
(1)上述解題過程是 否正確?__________________不正確;
(2)如有錯誤,在第___步到第___步推理錯誤,應(yīng)在第_____步后添加如下步驟:_________________。

查看答案和解析>>

解答題

四邊形DEFH為△ABC的內(nèi)接矩形,如圖,DE長為x,矩形的面積為y,寫出y與x之間的函數(shù)表達式,并判斷它是不是關(guān)于x的二次函數(shù).

查看答案和解析>>

(1)如圖1,在正方形ABCD中,O為正方形的中心,∠MON繞著O點自由的轉(zhuǎn)動,角的兩邊與正方形的邊BC、CD交于E、F.若∠MON=90°,正方形的面積等于S.求四邊形OECF的面積.(用S表示)
下面給出一種求解的思路,你可以按這一思路求解,也可以選擇另外的方法去求.
解:連接OB、OC.∵O為正方形的中心,∴∠BOC=
3604
=90°,
∵∠MON=90°∴∠FOC+∠EOC=∠EOB+∠EOC=90°.∴∠FOC=∠EOB
(下面請你完成余下的解題過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),O是△ABC的中心,∠MON=120°,正三角形ABC的面積等于S.求四邊形OECF的面積.(用S表示)
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X”,正n邊形的面積等于S.請你作出猜想:當∠MON=
 
°時,四邊形OECF的面積=
 
(用S表示,并直接寫出答案,不需要證明).
精英家教網(wǎng)

查看答案和解析>>

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如圖1),請用直尺(沒有刻度)和圓規(guī),作一個平行四邊形,使它的三個頂點恰好是△ABC的三個頂點(只需作一個,不必寫作法,但要保留作圖痕跡)
精英家教網(wǎng)
(3)根據(jù)題意,完成下列填空:
如圖2,L1與L2是同一平面內(nèi)的兩條相交直線,它們有1個交點,如果在這個平面內(nèi),再畫第3直線L3,那么這3條直線最多可有
 
個交點;如果在這個平面內(nèi)再畫第4條直線L4,那么這4條直線最多可有
 
個交點.由此我們可以猜想:在同一平面內(nèi),6條直線最多可有
 
個交點,n( n為大于1的整數(shù))條直線最多可有
 
個交點(用含n的代數(shù)式表示)

查看答案和解析>>

本題分為A、B 兩類題,你可從A、B 兩類題中任選一題解答即可
(A類):如圖,在△ABC中,AB=AC=a,M為底邊BC上的任意一點,過點M分別作AB、AC的平行線交AC于P,交AB于Q.
(1)求四邊形AQMP的周長;
(2)寫出圖中的兩對相似三角形(不需證明);
(3)M位于BC的什么位置時,四邊形AQMP為菱形?說明你的理由.
(B類):有人這樣證明三角形內(nèi)角和是180°,如圖,D是△ABC內(nèi)一點,連接AD、BD、CD,他們將△ABC分成了三個小的三角形.因此有:三個小三角形的內(nèi)角和的和比△ABC的內(nèi)角和多360°,如果設(shè)三角形內(nèi)角精英家教網(wǎng)和是x,則有:x+x+x=x+360°,易解得x=180°,你認為這個證明正確嗎?說說你的理由.

查看答案和解析>>


同步練習冊答案