121.導(dǎo)數(shù)的概念你理解了嗎?導(dǎo)數(shù)有些什么應(yīng)用.(理)定積分的概念與應(yīng)用應(yīng)注意. ① 了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.會求函數(shù)的單調(diào)區(qū)間.對多項(xiàng)式函數(shù)一般不超過三次. ② 了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件,會用導(dǎo)數(shù)求函數(shù)的極大值.極小值.對多項(xiàng)式函數(shù)一般不超過三次,會求閉區(qū)間上函數(shù)的最大值.最小值.對多項(xiàng)式函數(shù)一般不超過三次. 查看更多

 

題目列表(包括答案和解析)

A.

【命題意圖】本題考查導(dǎo)數(shù)的概念與幾何意義,中等題.

查看答案和解析>>

導(dǎo)數(shù)的概念

(1)對于函數(shù)y=f(x),如果自變量x在x0處有增數(shù)Δx,那么函數(shù)y相應(yīng)地有增量_________;比值_________就叫做函數(shù)y=f(x)在x0到x0Δx之間的_________.

(2)當(dāng)Δx→0時,有極限,我們就說y=f(x)在點(diǎn)x0處_________,并把這個極限叫做f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率)記作_________或_________,即(x0)=_________=_________,函數(shù)f(x)的導(dǎo)數(shù)(x)就是當(dāng)Δx→0時,函數(shù)的增量Δy與自變量的增量Δx的比的極限,即(x)=_________=_________.

查看答案和解析>>

導(dǎo)數(shù)的概念

(1)對于函數(shù)y=f(x),我們把式子稱為函數(shù)f(x)從x1到x2的_________.換言之,如果自變量x在x0處有增量Δx,那么函數(shù)f(x)相應(yīng)地有增量_________;比值_________就叫做函數(shù)y=f(x)在x0到x0Δx之間的_________.

(2)函數(shù)y=f(x)在x=x0處的瞬時變化率是_________,我們稱它為函數(shù)y=f(x)在x=x0處的_________,記作_________,即(x0)=_________.

(3)函數(shù)f(x)的導(dǎo)數(shù)(x)就是x的一個函數(shù).我們稱它為f(x)的_________,簡稱_________,記作_________.

查看答案和解析>>

已知函數(shù)

(I)     討論f(x)的單調(diào)性;

(II)   設(shè)f(x)有兩個極值點(diǎn)若過兩點(diǎn)的直線I與x軸的交點(diǎn)在曲線上,求α的值。

【解析】本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一就是三次函數(shù),通過求解導(dǎo)數(shù),求解單調(diào)區(qū)間。另外就是運(yùn)用極值的概念,求解參數(shù)值的運(yùn)用。

【點(diǎn)評】試題分為兩問,題面比較簡單,給出的函數(shù)比較常規(guī),,這一點(diǎn)對于同學(xué)們來說沒有難度但是解決的關(guān)鍵還是要看導(dǎo)數(shù)的符號的實(shí)質(zhì)不變,求解單調(diào)區(qū)間。第二問中,運(yùn)用極值的問題,和直線方程的知識求解交點(diǎn),得到參數(shù)的值。

(1)

 

查看答案和解析>>

已知函數(shù),曲線在點(diǎn)x=1處的切線為,若時,有極值。

(1)求的值; (2)求上的最大值和最小值。

【解析】本試題主要考查了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及運(yùn)用導(dǎo)數(shù)在研究函數(shù)的極值和最值的問題。體現(xiàn)了導(dǎo)數(shù)的工具性的作用。

 

查看答案和解析>>


同步練習(xí)冊答案