例1 化簡cos(π+α)+cos(π-α).其中k∈Z 解法一: 原式=cos[kπ+(+α)]+cos[kπ-(+α)] =coskπcos(+α)-sinkπsin(+α)+coskπcos(+α) +sinkπsin(+α)=2coskπcos(+α).(k∈Z) 當(dāng)k為偶數(shù)時.原式=2cos(+α)=cosα-sinα 當(dāng)k為奇數(shù)時.原式=-2cos(+α)=sinα-cosα 總之.原式=(-1)k(cosα-sinα).k∈Z 解法二:由(kπ++α)+(kπ--α)=2kπ.知 cos(kπ--α)=cos[2kπ-(+α+kπ)] =cos[-(kπ++α)]=cos(kπ++α) ∴原式=2cos(kπ++α)=2×(-1)kcos(+α) =(-1)k(cosα-sinα).其中k∈Z 評述:原式=cos(kπ++α)+cos(kπ--α)=cos[kπ+(+α)]+cos[kπ-(+α)] 這就啟發(fā)我們用余弦的和(差)角公式 例2 已知sin(α+β)=.cos(α-β)=.求的值 解法一:由已知條件及正弦的和(差)角公式. 解法二:令x= 解之得 例3已知函數(shù)y=Asin(ωx+).x∈R.(其中A>0.ω>0)的圖象在y軸右側(cè)的第一個最高點(diǎn)為M(2.2).與x軸在原點(diǎn)右側(cè)的第一個交點(diǎn)為N(6.0).求這個函數(shù)的解析式 解法一:根據(jù)題意.可知=6-2=4 ∴T=16.∴ω= 將點(diǎn)M的坐標(biāo)(2.2)代入y=2sin(x+). 得2=2sin(×2+) 即sin(+)=1 ∴滿足+=的的最小正數(shù)解.即= 從而所求的函數(shù)解析式是 y=2sin(x+).x∈R 解法二:將兩個點(diǎn)M(2.2).N(6.0)的坐標(biāo)分別代入y=2sin(ωx+φ)并化簡 ∴在長度為一個周期且包含原點(diǎn)的閉區(qū)間上.有 ∴所求的函數(shù)解析式是y=2sin(x+).x∈R 查看更多

 

題目列表(包括答案和解析)

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項(xiàng)式.
一般地,存在一個n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項(xiàng)式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項(xiàng)式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

(Ⅰ)化簡:
1-2sin20°cos20°
sin160°-
1-sin220°
;
(Ⅱ)已知α為第二象限角,化簡cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

查看答案和解析>>

①若α為第二象限角,化簡cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

②求
2sin10°-cos20°
sin20°
的值.

查看答案和解析>>

(1)已知tan(α+3π)=3,求
sinα-2cosα
sinα+cosα
的值;
(2)已知α為第二象限角,化簡cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

查看答案和解析>>

已知α是第二象限角,化簡cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

查看答案和解析>>


同步練習(xí)冊答案