例1. 設(shè). 當時.求的值 解:令得: . ∴. 點評:對于.令即可得各項系數(shù)的和的值,令即.可得奇數(shù)項系數(shù)和與偶數(shù)項和的關(guān)系 例2.求證:. 證倒序相加:設(shè) ① 又∵ ② ∵.∴. 由①+②得:. ∴.即. :左邊各組合數(shù)的通項為 . ∴ . 例3.已知:的展開式中.各項系數(shù)和比它的二項式系數(shù)和大. (1)求展開式中二項式系數(shù)最大的項,(2)求展開式中系數(shù)最大的項 解:令.則展開式中各項系數(shù)和為. 又展開式中二項式系數(shù)和為. ∴.. (1)∵.展開式共項.二項式系數(shù)最大的項為第三.四兩項. ∴.. (2)設(shè)展開式中第項系數(shù)最大.則. ∴.∴. 即展開式中第項系數(shù)最大.. 例4.已知. 求證:當為偶數(shù)時.能被整除 分析:由二項式定理的逆用化簡.再把變形.化為含有因數(shù)的多項式 ∵. ∴.∵為偶數(shù).∴設(shè)(). ∴ () . 當=時.顯然能被整除. 當時.()式能被整除. 所以.當為偶數(shù)時.能被整除 查看更多

 

題目列表(包括答案和解析)

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
(1)求證:x與y的關(guān)系為;
(2)設(shè),定義函數(shù),點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為的等比數(shù)列,O為原點,令,是否存在點Q(1,m),使得?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當方程在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
(1)求證:x與y的關(guān)系為;
(2)設(shè),定義函數(shù),點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為的等比數(shù)列,O為原點,令,是否存在點Q(1,m),使得?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當方程在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關(guān)系為y=
x
x+1

(2)設(shè)f(x)=
x
x+1
,定義函數(shù)F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
1
2
的等比數(shù)列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關(guān)系為y=
x
x+1
;
(2)設(shè)f(x)=
x
x+1
,定義函數(shù)F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
1
2
的等比數(shù)列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設(shè)這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
x=1,a0a1a2a3a4a5=2533,
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.

查看答案和解析>>


同步練習(xí)冊答案