題目列表(包括答案和解析)
(本題滿分14分)設(shè)數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn(n∈N*),已知點(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.(1)證明{an}是等差數(shù)列,并求an;(2)設(shè)m、k、p∈N*,m+p=2k,求證:+≥;(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由。
(本題滿分14分)已知,,
(1)若f(x)在處取得極值,試求c的值和f(x)的單調(diào)增區(qū)間;
(2)如右圖所示,若函數(shù)的圖象在連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在使得?(用含有a,b,f(a),f(b)的表達(dá)式直接回答)
(3)利用(2)證明:函數(shù)y=g(x)圖象上任意兩點的連線斜率不小于2e-4.
(本小題滿分14分)
已知點P ( t , y )在函數(shù)f ( x ) = (x ?? –1)的圖象上,且有t2 – c2at + 4c2 = 0 ( c ?? 0 ).
(1) 求證:| ac | ?? 4;(2) 求證:在(–1,+∞)上f ( x )單調(diào)遞增.(3) (僅理科做)求證:f ( | a | ) + f ( | c | ) > 1.
(本題滿分14分)
設(shè)數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn(n∈N*),已知點(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.(1)證明{an}是等差數(shù)列,并求an;(2)設(shè)m、k、p∈N*,m+p=2k,求證:+≥;(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由。
(本小題滿分14分)
已知函數(shù)f(x)=,g(x)=alnx,aR。
若曲線y=f(x)與曲線y=g(x)相交,且在交點處有相同的切線,求a的值及該切線的方程;
設(shè)函數(shù)h(x)=f(x)- g(x),當(dāng)h(x)存在最小之時,求其最小值(a)的解析式;
對(2)中的(a),證明:當(dāng)a(0,+)時, (a)1.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com