求函數(shù)單調(diào)區(qū)間的常用方法:定義法.圖象法.復(fù)合函數(shù)法.導(dǎo)數(shù)法等 查看更多

 

題目列表(包括答案和解析)

(2012•葫蘆島模擬)我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得:lny=g(x)lnf(x),再兩邊同時求導(dǎo)得到:
1
y
•y′=g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x)],運用此方法求得函數(shù)y=x
1
x
的一個單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得:lny=g(x)lnf(x),再兩邊同時求導(dǎo)得到:
1
y
•y′=g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x)],運用此方法求得函數(shù)y=x
1
x
的一個單調(diào)遞增區(qū)間是( 。
A.(e,4)B.(3,6)C.(0,e)D.(2,3)

查看答案和解析>>

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得:lny=g(x)lnf(x),再兩邊同時求導(dǎo)得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],運用此方法求得函數(shù)y=的一個單調(diào)遞增區(qū)間是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得:lny=g(x)lnf(x),再兩邊同時求導(dǎo)得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],運用此方法求得函數(shù)y=的一個單調(diào)遞增區(qū)間是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得:lny=g(x)lnf(x),再兩邊同時求導(dǎo)得到:•y′=g′(x)lnf(x)+g(x)••f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)••f′(x)],運用此方法求得函數(shù)y=的一個單調(diào)遞增區(qū)間是( )
A.(e,4)
B.(3,6)
C.(0,e)
D.(2,3)

查看答案和解析>>


同步練習冊答案