7.用數(shù)學(xué)歸納法證明=2n´1´2´3´-,從“k到k+1 左端應(yīng)增乘的代數(shù)式為 . 查看更多

 

題目列表(包括答案和解析)

用數(shù)學(xué)歸納法證明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,從“k到k+1”左端需增乘的代數(shù)式為(    )

A.2k+1                           B.2(2k+1)

C.                         D.

查看答案和解析>>

用數(shù)學(xué)歸納法證明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,從“k到k+1”左端需增乘的代數(shù)式為(    )

A.2k+1              B.2(2k+1)               C.            D.

查看答案和解析>>

用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N)時(shí)”,從“n=kn=k+1”,左邊需增乘的代數(shù)式是(  )

A.2k+1                  B.              C.2(2k+1)             D.

查看答案和解析>>

用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N)時(shí)”,從“n=kn=k+1”,左邊需增乘的代數(shù)式是(  )

A.2k+1                  B.              C.2(2k+1)             D.

查看答案和解析>>

用數(shù)學(xué)歸納法證明:(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1),其中n∈N*.

查看答案和解析>>


同步練習(xí)冊(cè)答案