本講概念性強(qiáng).抽象性強(qiáng).思維方法獨(dú)特.因此要立足于基礎(chǔ)知識(shí).基本方法.基本問(wèn)題的練習(xí).恰當(dāng)選取典型例題.構(gòu)建思維模式.造就思維依托和思維的合理定勢(shì).1.使用公式P(A)=計(jì)算時(shí).確定m.n的數(shù)值是關(guān)鍵所在,其計(jì)算方法靈活多變,沒(méi)有固定的模式.可充分利用排列組合知識(shí)中的分類(lèi)計(jì)數(shù)原理和分步計(jì)數(shù)原理.必須做到不重復(fù)不遺漏. 復(fù)習(xí)這部分內(nèi)容及解答此類(lèi)問(wèn)題首先必須使學(xué)生明確判斷兩點(diǎn):(1)對(duì)于每個(gè)隨機(jī)實(shí)驗(yàn)來(lái)說(shuō).所有可能出現(xiàn)的實(shí)驗(yàn)結(jié)果數(shù)n必須是有限個(gè),(2)出現(xiàn)的所有不同的實(shí)驗(yàn)結(jié)果數(shù)m其可能性大小必須是相同的.只有在同時(shí)滿足的條件下.運(yùn)用的古典概型計(jì)算公式P(A)=m/n得出的結(jié)果才是正確的. 查看更多

 

題目列表(包括答案和解析)

本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過(guò)橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點(diǎn),且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

(2011•江蘇二模)選答題:本大題共四小題,請(qǐng)從這4題中選作2小題,如果多做,則按所做的前兩題記分.每小題10分,共20分,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
A、選修4-1:
幾何證明選講.如圖,圓O的直徑AB=4,C為圓周上一點(diǎn),BC=2,過(guò)C作圓O的切線l,過(guò)A作l的垂線AD,AD分別與直線l、圓O交于點(diǎn)D,E,求∠DAC的度數(shù)與線段AE的長(zhǎng).
B、選修4-2:矩陣變換
求圓C:x2+y2=4在矩陣A=[
20
01
]的變換作用下的曲線方程.
C、選修4-4:坐標(biāo)系與參數(shù)方程
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2sinθ,它們相交于A、B兩點(diǎn),求線段AB的長(zhǎng).
D、選修4-5:不等式選講
已知a、b、c為正數(shù),且滿足acos2θ+bsin2θ<c.求證:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
求證:AD的延長(zhǎng)線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長(zhǎng)度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

(2012•廈門(mén)模擬)本小題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知e1=
1
1
是矩陣M=
a
 1
0
 b
屬于特征值λ1=2的一個(gè)特征向量.
(I)求矩陣M;
(Ⅱ)若a=
2
1
,求M10a.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,A(l,0),B(2,0)是兩個(gè)定點(diǎn),曲線C的參數(shù)方程為
AB
為參數(shù)).
(I)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(l,0為極點(diǎn),|
AB
|為長(zhǎng)度單位,射線AB為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
(3)選修4-5:不等式選講
(I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|(zhì)y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案