(二)重點.難點 重點:函數(shù)單調(diào)性的概念: 為了突出重點.使學(xué)生理解該概念.整個過程分為: 作圖象并觀察圖象→討論:函數(shù)圖象的變化趨勢是什么?→ 在這種變化趨勢下. x與函數(shù)值y是如何相互影響的?→你能從量的角度出一個縝密的.完善的定義來嗎? 每個步驟都是在教師的參與下與引導(dǎo)下.通過學(xué)生與學(xué)生之間.師生之間的合作交流.不斷反省.探索.直到完善結(jié)論.最終達到一個嚴(yán)密.簡潔的定義. 難點:函數(shù)單調(diào)性的判斷與推證: 突破該難點的:通過對照.分析定義.引導(dǎo)學(xué)生.概括出證明方法及步驟:“取量定大小.作差定符號.判斷得結(jié)論 .并注意解題過程的規(guī)范性與嚴(yán)謹(jǐn)性. 查看更多

 

題目列表(包括答案和解析)

(2013•日照二模)如圖是一直三棱柱(側(cè)棱CD⊥底面ABC)被削去上底后的直觀圖與三視圖的側(cè)(左)視圖、俯視圖,在直觀圖中,M是BD的中點,N是BC的重點,側(cè)(左視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(Ⅰ)求該幾何體的體積;
(Ⅱ)求證:AN∥平面CEM;
(Ⅲ)求證:平面BDE⊥平面BCD.

查看答案和解析>>

(2013•海口二模)2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個月.經(jīng)氣象局統(tǒng)計,北京市從1
月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣.《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》依據(jù)AQI指數(shù)高低將空氣污染級別分為:優(yōu),指數(shù)為0-50;良,指數(shù)為51-100;輕微污染,指數(shù)為101-150;輕度污染,指數(shù)為151-200;中度污染,指數(shù)為201-250;中度重污染,指數(shù)為251-300;重度污染,指數(shù)大于300.下面表1是該觀測點記錄的4天里,AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)的情況,表2是某氣象觀測點記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計結(jié)果,
表1:AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)情況
AQI指數(shù)M 900 700 300 100
空氣可見度y(千米) 0.5 3.5 6.5 9.5
表2:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計
AQI指數(shù) [0,200] (200,400] (400,600] (600,800] (800,1000]
頻數(shù) 3 6 12 6 3
(Ⅰ)設(shè)變量
?
x
=
M
100
,根據(jù)表1的數(shù)據(jù),求出
?
y
關(guān)于
?
x
的線性回歸方程;
(Ⅱ)小王在記錄表2數(shù)據(jù)的觀測點附近開了一家小飯館,飯館生意的好壞受空氣質(zhì)量
影響很大.假設(shè)每天空氣質(zhì)量的情況不受前一天影響.經(jīng)小王統(tǒng)計:AQI指數(shù)不高于200時,飯館平均每天凈利潤約700元,AQI指數(shù)在200至400時,飯館平均每天凈利潤約400元,AQI指數(shù)大于400時,飯館每天要凈虧損200元.
(。⿲㈩l率看作概率,求小王在連續(xù)三天里飯館凈利潤約1200元的概率;
(ⅱ)計算該飯館一月份每天收入的數(shù)學(xué)期望.(用最小二乘法求線性回歸方程系數(shù)公式b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

(2008•上海模擬)若一條曲線既是軸對稱圖形,又是中心對稱圖形,則稱這條曲線為“二重對稱曲線”,給出下列四條曲線:(1)  x2+
y2
4
=1  (2)  x2=y+1(3)  y=
3
cos(2x+
π
6
)  (4)   y=kx+b  (k,b∈R)

其中是“二重對稱曲線”的有
(1),(3)
(1),(3)

查看答案和解析>>

(2012•棗莊二模)袋內(nèi)裝有6個球,這些琮依次被編號為l、2、3、…、6,設(shè)編號為n的球重n2-6n+12(單位:克),這些球等可能地從袋里取出(不受重量、編號的影響).
(1)從袋中任意取出一個球,求其重量大于其編號的概率;
(2)如果不放回的任意取出2個球,求它們重量相等的概率.

查看答案和解析>>

(2011•南充一模)南充市在“十二五”規(guī)劃中,擬從4個重點項目和6個一般項目中各選2個項目作為開年的 啟動項目,則重點項目A和一般項目B至少有一個被選中的概率是( 。

查看答案和解析>>


同步練習(xí)冊答案