已知點P(x1.y1)在直線l: (>0)的左方.求證: 查看更多

 

題目列表(包括答案和解析)

已知點P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數(shù))
上任意一點,F(xiàn)2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于點P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)是否存在過點F2的直線l,使直線l與(1)中軌跡在y軸右側交于R1、R2兩不同點,且滿足
OR1
OR2
=4b2
,(O為坐標原點),若存在,求直線l的方程;若不存在,請說明理由;
(3)設(1)中軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點,求證:以MN為直徑的圓恒過兩個定點.

查看答案和解析>>

已知點P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數(shù))
上任意一點,F(xiàn)2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于點P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)是否存在過點F2的直線l,使直線l與(1)中軌跡在y軸右側交于R1、R2兩不同點,且滿足
OR1
OR2
=4b2
,(O為坐標原點),若存在,求直線l的方程;若不存在,請說明理由;
(3)設(1)中軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點,求證:以MN為直徑的圓恒過兩個定點.

查看答案和解析>>

已知實數(shù)c≥0,曲線與直線l:y=x-c的交點為P(異于原點O).在曲線C上取一點P1(x1,y1),過點P1作P1Q1平行于x軸,交直線l于Q1,過點Q1作Q1P2平行于y軸,交曲線C于P2(x2,y2);接著過點P2作P2Q2平行于x軸,交直線l于Q2,過點Q2作Q2P3平行于y軸,交曲線C于P3(x3,y3);如此下去,可得到點P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),設點P坐標為,x1=b,0<b<a.
(1)試用c表示a,并證明a≥1;
(2)證明:x2>x1,且xn<a(n∈N*);
(3)當時,求證:

查看答案和解析>>

已知實數(shù)c≥0,曲線與直線l:y=x-c的交點為P(異于原點O).在曲線C上取一點P1(x1,y1),過點P1作P1Q1平行于x軸,交直線l于Q1,過點Q1作Q1P2平行于y軸,交曲線C于P2(x2,y2);接著過點P2作P2Q2平行于x軸,交直線l于Q2,過點Q2作Q2P3平行于y軸,交曲線C于P3(x3,y3);如此下去,可得到點P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),設點P坐標為,x1=b,0<b<a.
(1)試用c表示a,并證明a≥1;
(2)證明:x2>x1,且xn<a(n∈N*);
(3)當時,求證:

查看答案和解析>>

已知實數(shù)c≥0,曲線Cy=與直線ly=x-c的交點為P(異于原點O),在曲線C上取一點P1(x1,y1),過點P1P1Q1平行于x軸,交直線l于點Q1,過點Q1Q1P2平行于y軸,交曲線C于點P2(x2,y2),接著過點P2P2Q2平行于x軸,交直線l于點Q2,過點Q2作直線Q2P3平行于y軸,交曲線C于點P3(x3,y3),如此下去,可以得到點P4(x4,y4),P5(x5,y5),…, Pn(xn,

xN),….設點P的坐標為(a,),x1=b,0<ba.

(1)試用c表示a,并證明a≥1;

(2)試證明x2x1,且xna(NN*);

(3)當c=0,b時,求證: (k,NN*).

查看答案和解析>>


同步練習冊答案