查看更多

 

題目列表(包括答案和解析)

十六、物理學家于今年9月評出十個最美的物理實驗。這種“美”是一種經典概念:最簡單的儀器和設備,最根本、最單純的科學結論。其實,科學美蘊藏于各門科學的實驗之中,有待于我們在學習過程中不斷地感悟和發(fā)現。

46.伽利略的自由落體實驗和加速度實驗均被選為最美的實驗。

    在加速度實驗中,伽利略將光滑直木板槽傾斜固定,讓銅球從木槽頂端沿斜面由靜止滑下;并用水鐘測量銅球每次下滑的時間,研究銅球的運動路程與時間的關系。亞里士多德曾預言銅球的運動速度是均勻不變的,伽利略卻證明銅球運動的路程與時間的平方成正比。請將亞里士多德的預言和伽利略的結論分別用公式表示(其中路程用s、速度用v、加速度用a、時間用t表示)。亞里士多德的預言:    ;伽利略的結論:    。

  伽利略的兩個實驗之所以成功,主要原因是在自由落體實驗中,忽略了空氣阻力,抓住了重力這一主要因素。在加速度實驗中,伽利略選用光滑直木板槽和銅球進行實驗研究銅球運動,是為了減小銅球運動過程中的   ,同時抓住   這一主要因素。

47.閱讀下列材料:

①早在1785年,卡文迪許在測定空氣組成時,除去空氣中的O2、N2等已知氣體后,發(fā)現最后總是留下一個體積不足總體積1/200的小氣泡。

②1892年,瑞利在測定氮氣密度時,從空氣中得到的氮氣密度為1.2572g/L,而從氨分解得到的氮氣密度為1.2508g/L。兩者相差0.0064g/L。

③瑞利和拉姆賽共同研究后認為:以上兩個實驗中的“小誤差”可能有某種必然的聯系,并預測大氣中含有某種較重的未知氣體。經反復實驗,他們終于發(fā)現了化學性質極不活潑的惰性氣體——氬。

請回答下列問題:

空氣緩慢通過下圖a~d裝置時,依次除去的氣體是…………………(  )

A.O2、N2、H2O、CO2                          B.CO2、H2O、O2、N2

C.H2O、CO2、N2、O2                          D.N2、O2、CO2、H2O

材料①②中的“小誤差”對測定空氣組成和氮氣密度的實驗而言是   (填“主要因素”或“次要因素”)。

材料③中科學家抓住了“小誤差”而獲得重大發(fā)現說明       。

48.某學生為了證明植物呼吸時放出二氣化碳,設計了如下圖的實驗裝置,其中綠色植物生長旺盛。將裝置在黑暗中放置24小時后觀察結果。試分析:該裝置放在黑暗中的作用是   ;該實驗除須在黑暗中完成外,還應注意    。

在實驗中,有同學提出,需要同時進行另一組其他條件相同但不放植物的實驗。你認為有沒有意義?簡述原因。

查看答案和解析>>

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。

一、簡諧運動

1、簡諧運動定義:= -k             

凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運動的方程

回避高等數學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。

依據:x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關名詞:(ωt +φ)稱相位,φ稱初相。

運動學參量的相互關系:= -ω2

A = 

tgφ= -

3、簡諧運動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經構成了質點在二維空間運動的軌跡參數方程,消去參數t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;

當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;

當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現象。

4、簡諧運動的周期

由②式得:ω=  ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運動的能量

一個做簡諧運動的振子的能量由動能和勢能構成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復力系數)k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機械波

1、波的產生和傳播

產生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)

2、機械波的描述

a、波動圖象。和振動圖象的聯系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復變函數。對任意一個時刻t ,都有一個y(x)的正弦函數,在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。

當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點便出現兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據前面已經做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點和高考要求相同。

5、多普勒效應

當波源或者接受者相對與波的傳播介質運動時,接收者會發(fā)現波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質的傳播速度v是恒定不變的)——

a、只有接收者相對介質運動(如圖3所示)

設接收者以速度v1正對靜止的波源運動。

如果接收者靜止在A點,他單位時間接收的波的個數為f ,

當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、

在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波

n = 

顯然,在單位時間內,接收者接收到的總的波的數目為:f + n = f ,這就是接收者發(fā)現的頻率f。即

f

顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質運動(如圖4所示)

設波源以速度v2正對靜止的接收者運動。

如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ 

在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當v2背離接收者,或有一定夾角的討論,類似a情形。

c、當接收者和波源均相對傳播介質運動

當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運動的證明與周期計算

物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。

模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數k就有了,求周期就是順理成章的事。

本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…

答案:木板運動周期為2π 。

鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動,F觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運動的定義式。

答案:松鼠做簡諧運動。

評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運動

1、彈簧振子

物理情形:如圖8所示,用彈性系數為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ

查看答案和解析>>

“神舟”六號飛船完成了預定空間科學和技術試驗任務后,返回艙于2005年10月17日4時11分開始從太空向地球表面按預定軌道返回.在離地l0km的高度返回艙打開阻力降落傘減速下降,返回艙在這一過程中所受空氣阻力與速度的平方成正比,比例系數(空氣阻力系數)為k.已知返回艙的總質量M=3000kg,所受空氣浮力恒定不變,且認為豎直降落.從某時刻起開始計時,返回艙的運動v-t圖象如圖中的AD曲線所示,圖中AB是曲線在A點的切線,切線交于橫軸于B點的坐標為( 10,0 ),CD是AD的漸近線,亦是平行于橫軸的直線,交縱軸于C點,C點的坐標為( 0,6 ).請解決下列問題:(取g=10m/s2
(1)在初始時刻v0=160m/s時,它的加速度多大?
(2)推證空氣阻力系數k的表達式并算出其數值;
(3)返回艙在距地高度h=10m時,飛船底部的4個反推力小火箭點火工作,使其速度由6m/s迅速減至1m/s后落在地面上. 若忽略燃料質量的減少對返回艙總質量的影響,并忽略此段速度變化而引起空氣阻力的變化,試估算每支小火箭的平均推力(計算結果取兩位有效數字).

查看答案和解析>>

“神舟”六號飛船完成了預定空間科學和技術試驗任務后,返回艙于2005年10月17日4時11分開始從太空向地球表面按預定軌道返回。在離地l0km的高度返回艙打開阻力降落傘減速下降,返回艙在這一過程中所受空氣阻力與速度的平方成正比,比例系數(空氣阻力系數)為k。已知返回艙的總質量M =3000kg,所受空氣浮力恒定不變,且認為豎直降落。從某時刻起開始計時,返回艙的運動vt圖象如圖中的AD曲線所示,圖中AB是曲線在A點的切線,切線交于橫軸于B點的坐標為( 10,0 ),CD是AD的漸近線,亦是平行于橫軸的直線,交縱軸于C點,C點的坐標為( 0,6 )。請解決下列問題:(取g=10 m/ s2

   (1)在初始時刻v0 = 160m/s時,它的加速度多大?

   (2)推證空氣阻力系數k的表達式并算出其數值;

   (3)返回艙在距地高度h = 10m時, 飛船底部的4個反推力小火箭點火工作, 使其速度由6m/s迅速減至1m/s后落在地面上。 若忽略燃料質量的減少對返回艙總質量的影響, 并忽略此階段速度變化而引起空氣阻力的變化, 試估算每支小火箭的平均推力(計算結果取兩位有效數字)。

查看答案和解析>>

“神舟”六號飛船完成了預定空間科學和技術試驗任務后,返回艙于2005年10月17日4時11分開始從太空向地球表面按預定軌道返回,在離地10km的高度打開阻力降落傘減速下降,這一過程中若返回艙所受阻力與速度的平方成正比,比例系數(空氣阻力系數)為k,設返回艙總質量M=3000kg,所受空氣浮力恒定不變,且認為豎直降落。從某時刻開始計時,返回艙的運動v-t圖象如圖中的AD曲線所示,圖中AB是曲線在A點的切線,切線交于橫軸一點B的坐標為(8,0),CD是平行橫軸的直線,交縱軸于C點C的坐標為(0,8)。g=10m/s2,請解決下列問題:

(1)在初始時刻v0=160m/s時,它的加速度多大?

(2)推證空氣阻力系數k的表達式并算出其數值。

(3)返回艙在距離高度h=1m時,飛船底部的4個反推力小火箭點火工作,使其速度由8m/s迅速減至1m/s后落在地面上,若忽略燃料質量的減少對返回艙總質量的影響,并忽略此階段速度變化而引起空氣阻力的變化,試估算每支小火箭的平均推力(計算結果取兩位有效數字)

查看答案和解析>>


同步練習冊答案