解:(I) 正面向上次數(shù)m 3 2 1 0 概率P(m) 正面向上次數(shù)n 2 1 0 概率P(n) (II)甲獲勝.則m>n,當(dāng)m=3時(shí).n=2,1,0,其概率為 當(dāng)m=2時(shí).n=1,0. 其概率為 當(dāng)m=1時(shí).n=0 其概率為 所以.甲獲勝的概率為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x2-ax+a(a∈R)同時(shí)滿(mǎn)足:①不等式f(x)≤0 的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=f(n).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿(mǎn)足ci-ci+1<0的正整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的變號(hào)數(shù),令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

(2013•淄博二模)已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期為
π
2

(I)求f(x)的表達(dá)式;
(II)將函數(shù)f(x)的圖象向右平移
π
8
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿(mǎn)足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試構(gòu)造一個(gè)數(shù)列{bn},(寫(xiě)出{bn}的一個(gè)通項(xiàng)公式)滿(mǎn)足:對(duì)任意的正整數(shù)n都有bn<an,且
lim
n→∞
an
bn
=2,并說(shuō)明理由;
(3)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿(mǎn)足ci-ci+1<0的正整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的變號(hào)數(shù).令cn=1-
a
an
(n為正整數(shù)),求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線(xiàn)l經(jīng)過(guò)矩陣B變換后的方程為y=x,求直線(xiàn)l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點(diǎn)Q極坐標(biāo)為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是圓C上的任意一點(diǎn),求P、Q兩點(diǎn)距離的最小值.
(3)選修4-5:不等式選講
(I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設(shè)x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

已知二次函數(shù)f(x)=x2-ax+a(a≠0),不等式f(x)≤0的解集有且只有一個(gè)元素,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=f(n).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,滿(mǎn)足ci•ci+1<0的正整數(shù)i的個(gè)數(shù)稱(chēng)作數(shù)列{cn}的變號(hào)數(shù),令cn=1-
aan
(n∈N*)
,求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>


同步練習(xí)冊(cè)答案