6.模的性質(zhì):⑴,⑵,⑶,⑷, 查看更多

 

題目列表(包括答案和解析)

(2010•福建模擬)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n
,
所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
對(duì)此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對(duì)上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個(gè)判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號(hào)
①③
①③

查看答案和解析>>

(2013•江門一模)甲、乙兩藥廠生產(chǎn)同一型號(hào)藥品,在某次質(zhì)量檢測(cè)中,兩廠各有5份樣品送檢,檢測(cè)的平均得分相等(檢測(cè)滿分為100分,得分高低反映該樣品綜合質(zhì)量的高低).成績(jī)統(tǒng)計(jì)用莖葉圖表示如圖:
(1)求a;
(2)某醫(yī)院計(jì)劃采購(gòu)一批該型號(hào)藥品,從質(zhì)量的穩(wěn)定性角度考慮,你認(rèn)為采購(gòu)哪個(gè)藥廠的產(chǎn)品比較合適?
(3)檢測(cè)單位從甲廠送檢的樣品中任取兩份作進(jìn)一步分析,在抽取的兩份樣品中,求至少有一份得分在(90,100]之間的概率.

查看答案和解析>>

(2013•渭南二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批日用品中隨機(jī)抽取a件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率頒布表如下表所示:
等級(jí) 1 2 3 4 5 合計(jì)
頻數(shù) c 4 9 2 3 a
頻率 0.1 b 0.45 0.1 0.15 1
(Ⅰ)求a,b,c的值;
(Ⅱ)在(Ⅰ)的條件下,從等級(jí)為4的2件日用品和等級(jí)為5的3件日用品中任取兩件(假定每件日用品被取出的可能性相同)寫出所有可能的結(jié)果,并求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.

查看答案和解析>>

(2012•昌平區(qū)二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如表所示:
等級(jí) 頻數(shù) 頻率
1 c a
2 4 b
3 9 0.45
4 2 0.1
5 3 0.15
合計(jì) 20 1
(Ⅰ)若所抽取的20件日用品中,等級(jí)系數(shù)為2的恰有4件,求a,b,c的值;
(Ⅱ)在(Ⅰ)的條件下,從等級(jí)為4的2件日用品和等級(jí)為5的3件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.

查看答案和解析>>

(2014•金山區(qū)一模)定義:對(duì)函數(shù)y=f(x),對(duì)給定的正整數(shù)k,若在其定義域內(nèi)存在實(shí)數(shù)x0,使得f(x0+k)=f(x0)+f(k),則稱函數(shù)f(x)為“k性質(zhì)函數(shù)”.
(1)若函數(shù)f(x)=2x為“1性質(zhì)函數(shù)”,求x0
(2)判斷函數(shù)f(x)=
1
x
是否為“k性質(zhì)函數(shù)”?說明理由;
(3)若函數(shù)f(x)=lg
a
x2+1
為“2性質(zhì)函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案