26.解:(1)由已知.得.. . . .············································································································ 設(shè)過點的拋物線的解析式為. 將點的坐標代入.得. 將和點的坐標分別代入.得 ··································································································· 解這個方程組.得 故拋物線的解析式為.··························································· (2)成立.························································································· 點在該拋物線上.且它的橫坐標為. 點的縱坐標為.······················································································· 設(shè)的解析式為. 將點的坐標分別代入.得 解得 的解析式為.········································································ ..··························································································· 過點作于點. 則. . . 又. . . .··········································································································· . (3)點在上...則設(shè). ... ①若.則. 解得..此時點與點重合. .··········································································································· ②若.則. 解得 ..此時軸. 與該拋物線在第一象限內(nèi)的交點的橫坐標為1. 點的縱坐標為. .······································································································· ③若.則. 解得..此時.是等腰直角三角形. 過點作軸于點. 則.設(shè). . . 解得. .··········································· 綜上所述.存在三個滿足條件的點. 即或或. 26.如圖.已知拋物線經(jīng)過點.拋物線的頂點為.過作射線.過頂點平行于軸的直線交射線于點.在軸正半軸上.連結(jié). (1)求該拋物線的解析式, (2)若動點從點出發(fā).以每秒1個長度單位的速度沿射線運動.設(shè)點運動的時間為.問當為何值時.四邊形分別為平行四邊形?直角梯形?等腰梯形? (3)若.動點和動點分別從點和點同時出發(fā).分別以每秒1個長度單位和2個長度單位的速度沿和運動.當其中一個點停止運動時另一個點也隨之停止運動.設(shè)它們的運動的時間為.連接.當為何值時.四邊形的面積最小?并求出最小值及此時的長. *26.解:(1)拋物線經(jīng)過點. ·························································································· 1分 二次函數(shù)的解析式為:·················································· 3分 (2)為拋物線的頂點過作于.則. ··················································· 4分 當時.四邊形是平行四邊形 ················································ 5分 當時.四邊形是直角梯形 過作于.則 (如果沒求出可由求) ····························································································· 6分 當時.四邊形是等腰梯形 綜上所述:當.5.4時.對應四邊形分別是平行四邊形.直角梯形.等腰梯形.·· 7分 及已知.是等邊三角形 則 過作于.則········································································· 8分 =·································································································· 9分 當時.的面積最小值為··································································· 10分 此時 ······················································ 11分 查看更多

 

題目列表(包括答案和解析)

已知四邊形ABCD中,P是對角線BD上的一點,過P作MN∥AD,EF∥CD,分別交AB、CD、AD、BC于點M、N、E、F,設(shè)a=PM•PE,b=PN•PF,解答下列問題:
(1)當四邊形ABCD是矩形時,見圖1,請判斷a與b的大小關(guān)系,并說明理由;
(2)當四邊形ABCD是平行四邊形,且∠A為銳角時,見圖2,(1)中的結(jié)論是否成立?并說明理由;
(3)在(2)的條件下,設(shè)
BP
PD
=k
,是否存在這樣的實數(shù)k,使得
S平行四邊形PEAM
S△ABD
=
4
9
?若存在,請求出滿足條件的所有k的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

已知:在平面直角坐標系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,點A在點B的左側(cè),若拋物線的對稱軸為x=1,點A的坐標為(-1,0).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為C,拋物線上一點D的坐標為(-3,12),過點B、D的直線與拋物線的對稱軸交于點E.問:是否存在這樣的點F,使得以點B、C、E、F為頂點的四邊形是平行四邊形?若存在,求出點F的坐標;若不存在,請說明理由;
(3)在(2)的條件下,若在BD上存在一點P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請你求出此時點P的坐標.

查看答案和解析>>

已知:在平面直角坐標系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,點A在點B的左側(cè),若拋物線的對稱軸為x=1,點A的坐標為(-1,0).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為C,拋物線上一點D的坐標為(-3,12),過點B、D的直線與拋物線的對稱軸交于點E.問:是否存在這樣的點F,使得以點B、C、E、F為頂點的四邊形是平行四邊形?若存在,求出點F的坐標;若不存在,請說明理由;
(3)在(2)的條件下,若在BD上存在一點P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請你求出此時點P的坐標.

查看答案和解析>>

已知:在平面直角坐標系xOy中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,點A在點B的左側(cè),若拋物線的對稱軸為x=1,點A的坐標為(-1,0).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為C,拋物線上一點D的坐標為(-3,12),過點B、D的直線與拋物線的對稱軸交于點E.問:是否存在這樣的點F,使得以點B、C、E、F為頂點的四邊形是平行四邊形?若存在,求出點F的坐標;若不存在,請說明理由;
(3)在(2)的條件下,若在BD上存在一點P,使得直線AP將四邊形ACBD分成了面積相等的兩部分,請你求出此時點P的坐標.

查看答案和解析>>

已知拋物線yx2+4xm(m為常數(shù))經(jīng)過點(0,4).

(1)求m的值;

(2)將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應的函數(shù)的最小值為-8.

①試求平移后的拋物線的解析式;

②試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案