22.解:(1)設(shè)實(shí)數(shù)是.則.即 .且. 又 (2)證明:若方程有純虛數(shù)根.則 (1)且 (2) 由(2)式得代入(1)式.得.此方程.所以為虛數(shù).與矛盾.故假設(shè)不成立. 所以原方程對(duì)于任意的實(shí)數(shù)不可能有純虛數(shù)根. 查看更多

 

題目列表(包括答案和解析)

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

(1) 當(dāng)時(shí),試寫出拋物線上的三個(gè)定點(diǎn)、的坐標(biāo),從而使得

;

(2)當(dāng)時(shí),若,

求證:;

(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:

① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評(píng)分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時(shí),拋物線的焦點(diǎn)為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,不妨取;

解:(1)拋物線的焦點(diǎn)為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

所以.

(3) ①取時(shí),拋物線的焦點(diǎn)為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

,

.

,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:

“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案