22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

1

2

3

4

5

6

7

8

9

10

11

12

D

B

B

B

C

C

B

B

B

C

C

C

13         400               14       

15          4                16      

17(本小題滿分12分)解:(1)由已知得

    …………………….6分

(2)

  ………………………….……….12分

18. (本小題滿分12分)解:記“甲從第一小組的10張票中任抽1張,抽到足球票”為事件A,“乙從第二小組的10張票中任抽1張,抽到足球票”為事件B;記“甲從第一小組的10張票中任抽1張,抽到排球票”為事件,“乙從張二小組的10張票中任抽1張,抽到排球票”為事件,于是

                              ……………………………………2分

由于甲(或乙)是否抽到足球票,對乙(或甲)是否抽到足球票沒有影響,因此A與B是相互獨立事件。……………………………………4分

(1)甲、乙兩人都抽到足球票就是事件A、B同時發(fā)生,根據(jù)相互獨立事件的乘法概率公式,得到 ………………………7分

因此,兩人都抽到足球票的概率是     ………………………8分

(2)甲、乙兩人均未抽到足球票(事件、同時發(fā)生)的概率為

     ………………………9分

所以,兩人中至少有1人抽到足球票的概率為

    

因此,兩人中至少有1人抽到足球票的概率是   ………………………12分

19.(本小題滿分12分)

   (1)證明:取AB中點H,連結(jié)GH,HE,

∵E,F(xiàn),G分別是線段PA、PD、CD的中點,

∴GH∥AD∥EF,

∴E,F(xiàn),G,H四點共面. ……………………1分

又H為AB中點,

∴EH∥PB. ……………………………………2分

又EH面EFG,PB平面EFG,

∴PB∥平面EFG. ………………………………4分

   (2)解:取BC的中點M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………5分

     在Rt△MAE中, ,

     同理,…………………………6分

,

∴在△MGE中,

………………7分

故異面直線EG與BD所成的角為arccos,………………………………8分

  解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

<ruby id="yb1t8"><noframes id="yb1t8"><span id="yb1t8"></span></noframes></ruby>

    1. <small id="yb1t8"><dl id="yb1t8"></dl></small>
      <rt id="yb1t8"></rt>

         (1)證明:

           …………………………1分

          設(shè)

          即,

         

           ……………3分

          ,

          ∴PB∥平面EFG. …………………………………………………………………… 4分

         (2)解:∵,…………………………………………5分

          ,……………………… 7分

      故異面直線EG與BD所成的角為arccos,………………………………8分

      (3)   

        ,            

      設(shè)面的法向量

      取法向量

      A到平面EFG的距離=.…………………………12分

      20. (本小題滿分12分)解:(1)因為

         所以,

         而,因此,所以,即數(shù)列是首項和公比都為2的等比數(shù)列。  ………………………6分

      (3)    由(1)知

      所以數(shù)列的通項公式為.………8分

            =

            =    ………………………12分

      21. (本小題滿分12分)解:(1)

      當(dāng)時,由得,同,由得,,則函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞增區(qū)間為. ………3分列表如下:

      0

      +

      0

      -

      0

      所以,當(dāng)時,函數(shù)的極大值為0,極小值為。 ………………6分

      (2)

      在區(qū)間上單調(diào)遞減,

      當(dāng);

      當(dāng).               ………………9分

      恒成立,

       解得,故的取值范圍是………………12分

       

      22.(本小題滿分14分)

         (1)解法一:設(shè),             …………1分

      當(dāng);                     …………3分

      當(dāng)                                              …………4分

      化簡得不合

      故點M的軌跡C的方程是                                                   …………5分

         (1)解法二:的距離小于1,

      ∴點M在直線l的上方,

      點M到F(1,0)的距離與它到直線的距離相等              …………3分

      所以曲線C的方程為                                                           …………5分

         (2)當(dāng)直線m的斜率不存在時,它與曲線C只有一個交點,不合題意,

      設(shè)直線m的方程為,

      代入 (☆)                                 …………6分

      與曲線C恒有兩個不同的交點

      設(shè)交點A,B的坐標(biāo)分別為,

                                                              …………7分

      ①由,

               …………9分

      點O到直線m的距離

      ………10分

      ,

      (舍去)

                                                                                      …………12分

      當(dāng)方程(☆)的解為

                              …………13分

      當(dāng)方程(☆)的解為

                 

          所以,           …………14分

       

       

       


      同步練習(xí)冊答案