(3)證明: 查看更多

 

題目列表(包括答案和解析)

證明:過拋物線y=a(x-x1)•(x-x2)(a≠0,x1<x2)上兩點(diǎn)A(x1,0)、B(x2,0)的切線,與x軸所成的銳角相等.

查看答案和解析>>

證明:對(duì)于任意實(shí)數(shù)t,復(fù)數(shù)z=
|cost|
+
|sint|
i
的模r=|z|適合r≤
42

查看答案和解析>>

證明:如果函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)x0處連續(xù).

查看答案和解析>>

證明:
sin2α+1
1+cos2α+sin2α
=
1
2
tanα+
1
2

查看答案和解析>>

證明:
2(cosα-sinα)
1+sinα+cosα
=
cosα
1+sinα
-
sinα
1+cosα

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當(dāng)……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中,

     同理,…………………………5分

又GM=

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設(shè)在線段CD上存在一點(diǎn)Q滿足題設(shè)條件,

∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

∴AD⊥AB,AD⊥PA.

又AB∩PA=A,

∴AD⊥平面PAB. ……………………………………8分

又∵E,F(xiàn)分別是PA,PD中點(diǎn),

∴EF∥AD,∴EF⊥平面PAB.

又EF面EFQ,

∴面EFQ⊥面PAB. …………………………………9分

過A作AT⊥ER于T,則AT⊥平面EFQ,

∴AT就是點(diǎn)A到平面EFQ的距離. ……………………………………………10分

設(shè),

    在, …………………………11分

    解得

    故存在點(diǎn)Q,當(dāng)CQ=時(shí),點(diǎn)A到平面EFQ的距離為0.8. ……………………… 12分

解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

   (1)證明:

     …………………………1分

    設(shè),

    即

   

     ……………2分

    ,

    ∴PB∥平面EFG. …………………………………………………………………… 3分

   (2)解:∵,…………………………………………4分

    ,……………………… 6分

 

20.(本小題滿分12分)

解:(1)數(shù)列{an}的前n項(xiàng)和,

                                      …………2分

,

                           …………3分

是正項(xiàng)等比數(shù)列,

 

,                                               …………4分

公比,                                                                                    …………5分

數(shù)列                                  …………6分

   (2)解法一:,

                        …………8分

,

當(dāng),                                      …………10分

故存在正整數(shù)M,使得對(duì)一切M的最小值為2…………12分

   (2)解法二:,

,         …………8分

,

函數(shù)…………10分

對(duì)于

故存在正整數(shù)M,使得對(duì)一切恒成立,M的最小值為2…………12

21.解:  1)設(shè)橢圓的焦距為2c,因?yàn)?sub>,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

易知右焦點(diǎn)F的坐標(biāo)為(),

據(jù)題意有AB所在的直線方程為:   ②                     ………3分

由①,②有:         ③

設(shè),弦AB的中點(diǎn),由③及韋達(dá)定理有:

 

所以,即為所求。                                    ………5分

2)顯然可作為平面向量的一組基底,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量,有且只有一對(duì)實(shí)數(shù),使得等式成立。設(shè),由1)中各點(diǎn)的坐標(biāo)有:

,所以

。                                   ………7分

又點(diǎn)在橢圓C上,所以有整理為。           ④

由③有:。所以

   ⑤

又A?B在橢圓上,故有                ⑥

將⑤,⑥代入④可得:。                                ………11分

對(duì)于橢圓上的每一個(gè)點(diǎn),總存在一對(duì)實(shí)數(shù),使等式成立,而

在直角坐標(biāo)系中,取點(diǎn)P(),設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為,顯然 。

也就是:對(duì)于橢圓C上任意一點(diǎn)M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

 

22.  …1分

上無極值點(diǎn)      ……………………………2分

當(dāng)時(shí),令,隨x的變化情況如下表:

x

0

遞增

極大值

遞減

從上表可以看出,當(dāng)時(shí),有唯一的極大值點(diǎn)

(2)解:當(dāng)時(shí),處取得極大值

此極大值也是最大值。

要使恒成立,只需

的取值范圍是     …………………………………………………8分

(3)證明:令p=1,由(2)知:

        …………………………………………………………10分

         ……………………………………………14分


同步練習(xí)冊(cè)答案