題目列表(包括答案和解析)
已知等差數(shù)列{an}的前n項和為Sn,a5=5,S5=15,則數(shù)列的前100項和為
(A) (B) (C) (D)
【解析】由,得,所以,所以,又,選A.
數(shù)列{an}滿足an+1+(-1)n an =2n-1,則{an}的前60項和為
(A)3690 (B)3660 (C)1845 (D)1830
【解析】由得,
,
即,也有,兩式相加得,設(shè)為整數(shù),
則,
于是
把函數(shù)的圖象按向量平移得到函數(shù)的圖象.
(1)求函數(shù)的解析式; (2)若,證明:.
【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調(diào)遞增.……10分
故,即
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學(xué)?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有
解:因為f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有
在中,滿足,是邊上的一點.
(Ⅰ)若,求向量與向量夾角的正弦值;
(Ⅱ)若,=m (m為正常數(shù)) 且是邊上的三等分點.,求值;
(Ⅲ)若且求的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則
令=,得,又,則為所求
第二問因為,=m所以,
(1)當(dāng)時,則=
(2)當(dāng)時,則=
第三問中,解:設(shè),因為,;
所以即于是得
從而
運用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量的夾角為,則
令=,得,又,則為所求……………2分
(Ⅱ)解:因為,=m所以,
(1)當(dāng)時,則=;-2分
(2)當(dāng)時,則=;--2分
(Ⅲ)解:設(shè),因為,;
所以即于是得
從而---2分
==
=…………………………………2分
令,則,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時,
1.D
2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,N,因此,(),又A∩B=,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.
5.A 提示:由得,當(dāng)時,△,
得,當(dāng)時,△,且,即
所以
6.A 7.D 8.A
9.D提示:設(shè)3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.
10.A 11.B
12.D 提示:由,又因為是的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1);
(2) ;綜合(1)、(2)可得。
二、填空題
13.3 14. w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com