得0≤(x-)≤.即0≤-m≤.由此解得-2≤m≤. 查看更多

 

題目列表(包括答案和解析)

設(shè)是直角坐標(biāo)系中,x軸、y軸正方向上的單位向量,設(shè)  

(1)若(,求.

(2)若時(shí),求的夾角的余弦值.

(3)是否存在實(shí)數(shù),使,若存在求出的值,不存在說明理由.

【解析】第一問中,利用向量的數(shù)量積為0,解得為m=-2

第二問中,利用時(shí),結(jié)合向量的夾角的余弦值公式解得

第三問中,利用向量共線,求解得到m不存在。

(1)因?yàn)樵O(shè)是直角坐標(biāo)系中,x軸、y軸正方向上的單位向量,設(shè)  

(2)因?yàn)?/p>

(3)假設(shè)存在實(shí)數(shù),使,則有

因此不存在;

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個(gè)選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時(shí),△,

,當(dāng)時(shí),△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因?yàn)?sub>的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1);

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊答案