(1)當(dāng)a=2.b=-2時(shí).求的不動(dòng)點(diǎn), 查看更多

 

題目列表(包括答案和解析)

已知A,B分別是直線y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2,D是AB的中點(diǎn).

(1)求動(dòng)點(diǎn)D的軌跡C的方程;

(2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,

①當(dāng)|PQ|=3時(shí),求直線l的方程;

②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)·恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.

查看答案和解析>>

如圖,已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B滿足∠AQP=∠BQP,其中Q點(diǎn)坐標(biāo)為(-4,0),原點(diǎn)O為PQ的中點(diǎn).

(1)證明A、P、B三點(diǎn)共線.

(2)當(dāng)m=2時(shí),是否存在垂直于x軸的直線,使得被以AP為直徑的圓所截得的弦長(zhǎng)為定值?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).

(1)求證:A、P、B三點(diǎn)共線;

(2)當(dāng)m=2時(shí),是否存在垂直于x的直線被以AP為直徑的圓所截得的弦長(zhǎng)L為定值?若存在,求出的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交直線l:x=-2于點(diǎn)Q

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

()若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;

(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

對(duì)于函數(shù)f(x)=ax2+(b+1)x+b-2,(a≠0),若存在實(shí)數(shù)x0,使f(x0)=x0成立,則稱x0f(x)的不動(dòng)點(diǎn)

(1)當(dāng)a=2,b=-2時(shí),求f(x)的不動(dòng)點(diǎn);

(2)若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不相同的不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,y=f(x)圖像上的兩點(diǎn)A、B的橫坐標(biāo)x1,x2是函數(shù)f(x)的不動(dòng)點(diǎn),且x1+x2,求b的最小值.

查看答案和解析>>

1.D

2.C 提示:畫(huà)出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對(duì)照四個(gè)選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒(méi)有相同的集合,可知M、N中沒(méi)有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時(shí),△,

,當(dāng)時(shí),△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因?yàn)?sub>的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1)

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊(cè)答案