所以當(dāng)a>0.1<b≤1時.對任意x∈[0.1].≤1的充要條件是a≤b+1. 查看更多

 

題目列表(包括答案和解析)

(A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類)已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對一切實數(shù)x及m恒成立,求實數(shù)k的取值范圍;
(3)定義:若存在一個非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

(A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類)已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對一切實數(shù)x及m恒成立,求實數(shù)k的取值范圍;
(3)定義:若存在一個非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時,△

,當(dāng)時,△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因為的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1)

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊答案