=.∵.∴由基本不等式可知(當且僅當時取等號.但.故等號取不到).∴同.樣.--.(), 查看更多

 

題目列表(包括答案和解析)

已知為坐標原點,點的坐標為),點的坐標、滿足不等式組. 若當且僅當時,取得最大值,則的取值范圍是

A.          B.     C.          D.

 

 

查看答案和解析>>

若對任意,,(、)有唯一確定的與之對應(yīng),稱為關(guān)于、的二元函數(shù). 現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實數(shù)、的廣義“距離”:

(1)非負性:,當且僅當時取等號;

(2)對稱性:

(3)三角形不等式:對任意的實數(shù)z均成立.

今給出個二元函數(shù):①;②;③;④.則能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號是           .

 

查看答案和解析>>

設(shè)函數(shù)

解不等式;(4分)

事實上:對于成立,當且僅當時取等號.由此結(jié)論證明:.(6分)

 

查看答案和解析>>

若對任意,,(、)有唯一確定的與之對應(yīng),稱為關(guān)于、的二元函數(shù). 現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實數(shù)、的廣義“距離”:

(1)非負性:,當且僅當時取等號;

(2)對稱性:;

(3)三角形不等式:對任意的實數(shù)z均成立.

今給出四個二元函數(shù):①;②

.

能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號是             .

 

查看答案和解析>>

若對任意,()有唯一確定的與之對應(yīng),則稱為關(guān)于的二元函數(shù)。現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實數(shù)的廣義“距離”:

  (1)非負性:,當且僅當時取等號;

  (2)對稱性:;

  (3)三角形不等式:對任意的實數(shù)均成立.

今給出三個二元函數(shù),請選出所有能夠成為關(guān)于的廣義“距離”的序號:

;②;③._________________.

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當q=1時,Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當q=-2時,Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當q=-時,Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),;

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

,

又設(shè)銷售利潤為數(shù)列

,

考察的單調(diào)性,

當n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

。

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當n≤50時,

當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習冊答案