故對..-. 查看更多

 

題目列表(包括答案和解析)

對于n∈N+,將n 表示n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,當i=0時,ai=1,當1≤i≤k時,a1為0或1.記I(n)為上述表示中ai為0的個數(shù)(例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,I(4)=2),則
(1)I(12)=
 
;(2)
127n=1
2I(n)
=
 

查看答案和解析>>

對于函數(shù)y=ex,曲線y=ex在與坐標軸交點處的切線方程為y=x+1,由于曲線 y=ex在切線y=x+1的上方,故有不等式ex≥x+1.類比上述推理:對于函數(shù)y=lnx(x>0),有不等式(  )

查看答案和解析>>

對三臺儀器進行檢驗,各儀器產(chǎn)生故障是相互獨立的,且產(chǎn)生故障的概率分別為p1,p2,p3,那么產(chǎn)生故障的儀器臺數(shù)的數(shù)學期望為

A.p1p2p3             B.1-p1p2p3           C.p1+p2+p3               D.1-(p1+p2+p3)

查看答案和解析>>

對命題“abc推出ac”,關于真假問題,甲、乙兩個學生的判斷如下:甲生判斷是真命題.理由是:由ab可知ab的方向相同或相反,由bc可知cb的方向相同或相反,從而有ac的方向相同或相反,故ac,即原命題為真命題;乙生判斷是假命題.理由是:當兩個非零向量a,c不平行,而b=0時,顯然abbc,但不能推出abc,故此時結論不成立,即原命題為假命題.究竟甲、乙兩生誰的判斷正確呢?請給以分析.

查看答案和解析>>

對于n∈N+,將n 表示n=a×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×2,當i=0時,ai=1,當1≤i≤k時,a1為0或1.記I(n)為上述表示中ai為0的個數(shù)(例如:1=1×2,4=1×22+0×21+0×2,故I(1)=0,I(4)=2),則
(1)I(12)=    ;(2)=   

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當q=1時,Sn,Sn+1,Sn+2構成等差數(shù)列;

當q=-2時,Sn+1,Sn,Sn+2構成等差數(shù)列;

當q=-時,Sn,Sn+2,Sn+1構成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉相除法:         

的最大公約數(shù).

(法二)更相減損術:

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),

(2)由(1)得,假設數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

又設銷售利潤為數(shù)列,

考察的單調(diào)性,

當n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

。

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當n≤50時,

當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習冊答案