10若.則an+1-an= 查看更多

 

題目列表(包括答案和解析)

(05年北京卷理)(14分)

是定義在[0,1]上的函數(shù),若存在,使得在[0,]上單調(diào)遞增,在[,1]單調(diào)遞減,則稱為[0,1]上的單峰函數(shù),為峰點,包含峰點的區(qū)間為含峰區(qū)間對任意的[0,1]上的單峰函數(shù),下面研究縮短其含峰區(qū)間長度的方法

(Ⅰ)證明:對任意的 , ,若,則(0,)為含峰區(qū)間;若,則(,1)為含峰區(qū)間;

(Ⅱ)對給定的(0<<0.5),證明:存在,滿足,使得由(Ⅰ)確定的含峰區(qū)間的長度不大于0.5+;

(Ⅲ)選取, 由(Ⅰ)可確定含峰區(qū)間為(0,)或(,1),在所得的含峰區(qū)間內(nèi)選取,由類似地可確定是一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02且使得新的含峰區(qū)間的長度縮短到0.34

(區(qū)間長度等于區(qū)間的右端點與左端點之差)

查看答案和解析>>

等差數(shù)列{an}、{bn}的前n項和分別為SnTn,若=,則等于

A.1                              B.                          C.                                   D.

查看答案和解析>>

數(shù)列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個峰值.
(Ⅰ)若,則{an}的峰值為    ;
(Ⅱ)若an=tlnn-n,且an不存在峰值,則實數(shù) t的取值范圍是   

查看答案和解析>>

已知數(shù)列{an}的前n項和為Sn,給出下列四個命題:
①若,則{an}為等差數(shù)列;
②若{an}為等差數(shù)列且a1>0,則數(shù)列為等比數(shù)列;
③若{an}為等比數(shù)列,則{lgan}為等差數(shù)列;
④若{an}為等差數(shù)列,且Sn=100,a2n+1+a2n+2+…+a3n=-120,則S2n=90,其中真命題有   

查看答案和解析>>

,則an與an+1的大小關系是( )
A.a(chǎn)n>an+1
B.a(chǎn)n<an+1
C.a(chǎn)n=an+1
D.不能確定

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當q=1時,Sn,Sn+1,Sn+2構成等差數(shù)列;

當q=-2時,Sn+1,Sn,Sn+2構成等差數(shù)列;

當q=-時,Sn,Sn+2,Sn+1構成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術:

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1);

(2)由(1)得,假設數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

,

又設銷售利潤為數(shù)列,

考察的單調(diào)性,

當n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

。

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當n≤50時,

當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習冊答案