要證.只需證.由.兩邊平方得...點評:綜合法和分析法并用實際上是解決數(shù)學問題的一般思維方式.在解決數(shù)學問題的過程中分析和綜合往往是相互伴隨的.綜合的過程離不開對問題的分析.分析的結(jié)果離不開綜合的表達.因此在選擇數(shù)學證明方法時.一定要有“綜合性選取 的意識.要明確數(shù)學證明方法不是孤立的.是相互聯(lián)系.他們在同一個問題中往往交互使用.重點六.反證法 查看更多

 

題目列表(包括答案和解析)

過正四面體的外接球的球心O作平面,所得截面有多種情況,請從下列提供的六種截面圖形中選出你認為正確的兩種____________.(注:只需選對兩種就可得4分,但所選答案中有錯的得0分)

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

已知R.

(1)求函數(shù)的最大值,并指出此時的值.

(2)若,求的值.

【解析】本試題主要考查了三角函數(shù)的性質(zhì)的運用。(1)中,三角函數(shù)先化簡=,然后利用是,函數(shù)取得最大值(2)中,結(jié)合(1)中的結(jié)論,然后由

,兩邊平方得,因此

 

查看答案和解析>>

如圖SA⊥平面ABC,AB⊥BC,過A做SB的垂線,垂足為E,過E做SC的垂線,垂足為F,求證AF⊥SC.以下是證明過程:
要證AF⊥SC
只需證  SC⊥平面AEF
只需證  AE⊥SC(因為EF⊥SC)
只需證  AE⊥平面SBC
只需證
(因為AE⊥SB)
只需證  BC⊥平面SAB
只需證
(因為AB⊥BC)
由只需證  SA⊥平面ABC可知上式成立
所以AF⊥SC
把證明過程補充完整①
AE⊥BC
AE⊥BC
BC⊥SA
BC⊥SA

查看答案和解析>>

如圖⊥平面,,過

的垂線,垂足為,過的垂線,垂足為

,求證。以下是證明過程:

要證                     

只需證  ⊥平面

只需證  (因為

只需證  ⊥平面

只需證       ①    (因為

只需證  ⊥平面

只需證       ②    (因為

由只需證  ⊥平面可知上式成立

所以

把證明過程補充完整①                           

 

查看答案和解析>>


同步練習冊答案