題目列表(包括答案和解析)
已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.
【解析】第一問當(dāng)時(shí),,則。
依題意得:,即 解得
第二問當(dāng)時(shí),,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),,令得
當(dāng)變化時(shí),的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,!在上的最大值為2.
②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;
當(dāng)時(shí), 在上單調(diào)遞增。∴在最大值為。
綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;
當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時(shí),
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知橢圓的方程為,、和為的三個(gè)頂點(diǎn).
(1)若點(diǎn)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)設(shè)點(diǎn)在橢圓內(nèi)且不在軸上,如何構(gòu)作過中點(diǎn)的直線,使得與橢圓的兩個(gè)交點(diǎn)、滿足?令,,點(diǎn)的坐標(biāo)是(-8,-1),若橢圓上的點(diǎn)、滿足,求點(diǎn)、的坐標(biāo).
本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知橢圓的方程為,、和為的三個(gè)頂點(diǎn).
(1)若點(diǎn)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)設(shè)點(diǎn)在橢圓內(nèi)且不在軸上,如何構(gòu)作過中點(diǎn)的直線,使得與橢圓 的兩個(gè)交點(diǎn)、滿足?令,,點(diǎn)的坐標(biāo)是(-8,-1),若橢圓上的點(diǎn)、滿足,求點(diǎn)、的坐標(biāo).
已知雙曲線的中心在原點(diǎn),對稱軸為坐標(biāo)軸,其一條漸近線方程是,且雙曲線過點(diǎn).
(1)求此雙曲線的方程;
(2)設(shè)直線過點(diǎn),其方向向量為,令向量滿足.雙曲線的右支上是否存在唯一一點(diǎn),使得. 若存在,求出對應(yīng)的值和的坐標(biāo);若不存在,說明理由.
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知橢圓的方程為,、和為的三個(gè)頂點(diǎn).
(1)若點(diǎn)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)設(shè)點(diǎn)在橢圓內(nèi)且不在軸上,如何構(gòu)作過中點(diǎn)的直線,使得與橢圓的兩個(gè)交點(diǎn)、滿足?令,,點(diǎn)的坐標(biāo)是(-8,-1),若橢圓上的點(diǎn)、滿足,求點(diǎn)、的坐標(biāo).
一、選擇題
1-5 BBAB 文B理A 6-10 ADCBC 11-12文B理D A
6.A 提示:設(shè)=,則表示點(diǎn)與點(diǎn)(0,0)連線的斜率.當(dāng)該直線kx-y=0與圓相切時(shí),取得最大值與最小值.圓心(2,0),由=1,解得,∴的最大值為.11.(文) B
11.(文) A 提示:拋物線的焦點(diǎn)為F(1,0),作PA垂直于準(zhǔn)線x=-1,則
|PA|=|PF|,當(dāng)A、P、Q在同一條直線上時(shí),
|PF|+|PQ|=|PA|+|PQ|=|AQ|,
此時(shí),點(diǎn)P到Q點(diǎn)距離與拋物線焦點(diǎn)距離之和取得最小值,
P點(diǎn)的縱坐標(biāo)為-1,有1=4x,x=,此時(shí)P點(diǎn)坐標(biāo)為(,-1),故選A。
11.(理) B提示:設(shè)則
又。
12.A 提示:如右圖所示,設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),由拋物線以F2為頂點(diǎn),F1為焦點(diǎn),可得其準(zhǔn)線的方
程為x=3c, 根據(jù)拋物線的定義可得|PF1|=|PR|=3c-x0,又由點(diǎn)P為雙曲線上的點(diǎn),根據(jù)雙曲線的第二定義可得=e, 即得|PF2|=ex0-a, 由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=, 故應(yīng)選A.
二、填空題:13-16文理 3 35
九、實(shí)戰(zhàn)演習(xí)
一 選擇題
1.與圓相切,且在兩坐標(biāo)軸上截距相等的直線共有 ( )
A.2條 B.3條 C.4條 D.6條
1.C提示: 在兩坐標(biāo)軸上截距相等的直線有兩類:①直線過原點(diǎn)時(shí),有兩條與已知圓相切;②直線不過原點(diǎn)時(shí),設(shè)其方程為,也有兩條與已知圓相切.易知①、②中四條切線互不相同,故選C.
2.在中,三內(nèi)角所對的邊是且成等差數(shù)列,那么直線與直線的位置關(guān)系是 ( )
A.平行 B.重合 C.垂直 D.相交但不垂直
2.B提示:成等差數(shù)列,
又,
,故兩直線重合。選B。
3.已知函數(shù),集合,集合,則集合的面積是
A. B. C. D.
3.D提示: 集合即為:,集合即為: ,其面積等于半圓面積。
4.(文)已知直線m:交x軸于M,E是直線m上的點(diǎn),N(1,0),又P在線段EN的垂直平分線上,且,則動點(diǎn)P的軌跡是( )
A.圓 B.橢圓 C.雙曲線 D.拋物線
4.(文)D.
4.(理)已知P在雙曲線上變動,O是坐標(biāo)原點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),則的重心G的軌跡方程是( )
A. B.
C. D.
4.(理)C.提示:雙曲線焦點(diǎn)坐標(biāo)是F(6,0).設(shè)雙曲線上任一點(diǎn)P(x0,y0), 的重心G(x,y),則由重心公式,
得,解得,代入,得為所求.
5.已知是三角形的一個(gè)內(nèi)角,且,則方程表示( 。
A.焦點(diǎn)在軸上的橢圓 B.焦點(diǎn)在軸上的橢圓
C.焦點(diǎn)在軸上的雙曲線 D.焦點(diǎn)在軸上的雙曲線
5.B提示:由,又是三角形的一個(gè)內(nèi)角,故,
再由,
結(jié)合解得
。
故方程表示焦點(diǎn)在軸上的橢圓。選B。
或者結(jié)合單位圓中的三角函數(shù)線直接斷定。
6.過拋物線的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線 。 )
A.有且僅有一條 B.有且僅有兩條 C.有無窮多條 D.不存在
6.B提示:該拋物線的通徑長為4,而這樣的弦AB的長為,故這樣的直線有且僅有兩條。選B。
或者(1)當(dāng)該直線的斜率不存在時(shí),它們的橫坐標(biāo)之和等于2;
(2)當(dāng)該直線的斜率存在時(shí),設(shè)該直線方程為,代入拋物線方程得
,由。故這樣的直線有且僅有兩條。
7.一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)在軸上,(2,)是橢圓上一點(diǎn),且成等差數(shù)列,則橢圓方程為 。ā 。
A. B. C. D.
7.A提示:設(shè)橢圓方程為,由成等差數(shù)列知,從而,故橢圓方程為,將P點(diǎn)的坐標(biāo)代入得,故所求的橢圓方程為。選A。
8.以A(4,3,1),B(7,1,2),C(5,2,3)為頂點(diǎn)的三角形形狀為( )
A .直角三角形 B. 等腰三角形 C.非等腰三角形三角形 D.等邊三角形
8. B.提示:由兩點(diǎn)間距離公式,得,,故選B.
9. 若直線與雙曲線的右支交于不同的兩點(diǎn),則k的取值范圍是( )
A., B., C., D.,
9.D提示:特別注意的題目。將直線代入雙曲線方程得
若直線與雙曲線的右支交于不同的兩點(diǎn),則應(yīng)滿足
。選D。
10. (文)設(shè)離心率為e的雙曲線的右焦點(diǎn)為F,直線過點(diǎn)F且斜率為K,則直線與雙曲線C左、右支都有相交的充要條件是( )
A. B.
C. D.
10. (理)已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”。給出下列直線①②③④。其中屬于“B型直線”的是( )
A、①③ B、①② C、③④ D、①④
10. (文)C 提示:由已知設(shè)漸近線的斜率為于是
,即故選C;
10. (理)B 提示:理解為以M、N為焦點(diǎn)的雙曲線,則c=5, 又|PM|-|PN|=6,則a=3,b=4,幾何意義是雙曲線的右支,所謂“B型直線”即直線與雙曲線的右支有交點(diǎn),又漸近線為:,逐一分析,只有①②與雙曲線右支有交點(diǎn),故選B;
11.已知雙曲線的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線上,且,則此雙曲線的離心率的最大值為 ( )
A、 B、 C、 D、2
11.B提示:,由 又
∴ 故選B項(xiàng)。
12.若AB過橢圓 + =1 中心的弦, F1為橢圓的焦點(diǎn), 則△F1AB面積的最大值為( )
A. 6 B.12 C.24 D.48
12.B提示:設(shè)AB的方程為,代入橢圓方程得,。選B。
二 填空題
13.橢圓M:=1 (a>b>0) 的左、右焦點(diǎn)分別為F1、F2,P為橢圓M上任一點(diǎn),且 的最大值的取值范圍是[2c2,3c2],其中. 則橢圓M的離心率e的取值范圍是
13.
14. 1.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)發(fā)射了兩顆“銥星”系統(tǒng)通信衛(wèi)星.衛(wèi)星運(yùn)行的軌道是以地球中心為一個(gè)焦點(diǎn)的橢圓,近地點(diǎn)為m km,遠(yuǎn)地點(diǎn)為 n km,地球的半徑為R km,則通信衛(wèi)星運(yùn)行軌道的短軸長等于
14. 2提示: -c=m+R, +c=n+R,
∴c=,b=2=2.
15. 已知與曲線C:x2+y2-2x-2y+1=0相切的直線交x、y軸于A、B兩點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b,a>2,b>2,線段AB中點(diǎn)的軌跡方程是 。
15. 提示:滿足(a-2)(b-2)=2。設(shè)AB的中點(diǎn)坐標(biāo)為(x,y), 則a=2x,b=2y, 代入①得(2x-2)(2y-2)=2, 即(x-1)(y-1)= (x>1,y>1)。
16.以下四個(gè)關(guān)于圓錐曲線的命題中
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),,則動點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作該圓的動弦AB,O為坐標(biāo)原點(diǎn),若則動點(diǎn)的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線有相同的焦點(diǎn).
其中真命題的序號為 (寫出所有真命題的序號)
16. ③、④
三 解答題(74分)
17. (本小題滿分12分)已知,直線:和圓:.
(1)求直線斜率的取值范圍;
(2)直線能否將圓分割成弧長的比值為的兩段圓。繛槭裁?
解析:(1)直線的方程可化為,直線的斜率,因?yàn)?sub>,所以,當(dāng)且僅當(dāng)時(shí)等號成立.
所以,斜率的取值范圍是.
(2)不能.由(1)知的方程為,其中.
圓的圓心為,半徑.圓心到直線的距離.
由,得,即.從而,若與圓相交,則圓截直線所得的弦所對的圓心角小于.所以不能將圓分割成弧長的比值為的兩段。
18. (本小題滿分12分)已知A、B分別是橢圓的左右兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P)在橢圓上,線段PB與y軸的交點(diǎn)M為線段PB的中點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)C是橢圓上異于長軸端點(diǎn)的任意一點(diǎn),對于△ABC,求的值
18.解:(1)由題意知:
∴橢圓的標(biāo)準(zhǔn)方程為=1.
(2)∵點(diǎn)C在橢圓上,A、B是橢圓的兩個(gè)焦點(diǎn),
∴AC+BC=2a=,AB=2c=2 .
在△ABC中,由正弦定理, ,
∴= .
19.(本小題滿分12分)已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是(為大于0的常數(shù)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上一點(diǎn),且過點(diǎn)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com