題目列表(包括答案和解析)
四棱錐的頂點(diǎn)P在底面ABCD中的投影恰好是A,其三視圖如圖所示,則四棱錐的表面積為
A. a2 B. 2a2 C. a2 D. (2+)a2
四棱錐的頂點(diǎn)P在底面ABCD中的投影恰好是A,其三視圖如圖所示,則四棱錐的表面積為
A.a2 | B.2a2 | C.a2 | D.(2+)a2 |
A.a2 | B.2a2 | C.a2 | D.(2+)a2 |
四棱錐的頂點(diǎn)P在底面ABCD中的投影恰好是A,其三視圖如圖,則四棱錐的表面積 .
四棱錐的頂點(diǎn)P在底面ABCD中的投影恰好是A,其三視圖如圖所示,則四棱錐的表面積為
A. B.
C. D.
一、填空題:
1. ,均有x 2+ x +1≥0 2.第一象限 3.充分而不必要條件 4. 0.01
5. 4 6. 2550 7. 8.①④ 9. R(S1+S2+S3+S4)
10. ,11. 12.1 13. 14.
二、解答題:
15.(Ⅰ)因?yàn)楦鹘M的頻率和等于1,故第四組的頻率:
3′
直方圖如右所示 6′
(Ⅱ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,頻率和為 所以,抽樣學(xué)生成績(jī)的合格率是%.. 9 ′
利用組中值估算抽樣學(xué)生的平均分
=
=71
估計(jì)這次考試的平均分是71分 12′
16.(1)證明:連結(jié)BD.
在長(zhǎng)方體中,對(duì)角線.
又 E、F為棱AD、AB的中點(diǎn),
.
.
又B1D1平面,平面,
EF∥平面CB1D1. 6′
(2) 在長(zhǎng)方體中,AA1⊥平面A1B
AA1⊥B1D1.
又在正方形A1B
B1D1⊥平面CAA
又 B1D1平面CB1D1,
平面CAA
17. (1)由得 4′
由正弦定理得
6′
8′
(2)
= 10′
= 12′
由(1)得
15′
18.(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,
∴a=1,b=c=,
故C的方程為:y2+=1 5′
(2)由=λ,
∴λ+1=4,λ=3 或O點(diǎn)與P點(diǎn)重合= 7′
當(dāng)O點(diǎn)與P點(diǎn)重合=時(shí),m=0
當(dāng)λ=3時(shí),直線l與y軸相交,則斜率存在。
設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2)
得(k2+2)x2+2kmx+(m2-1)=0
Δ=(
x1+x2=, x1x2= 11′
∵=3 ∴-x1=3x2 ∴
消去x2,得3(x1+x2)2+4x1x2=0,∴3()2+4=0
整理得4k
m2=時(shí),上式不成立;m2≠時(shí),k2=,
因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1
容易驗(yàn)證k2>
即所求m的取值范圍為(-1,-)∪(,1)∪{0} 16′
19. ⑴由題意得 4′
(n≥2),
又∵,
數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列。 8′
[則()]
⑵由及得
, 11′
則 13′
16′
20. (1)設(shè)
∴ ∴
由
又∵ ∴
∴ 6′
于是
由得或; 由得或
故函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)減區(qū)間為和 10′
(2)證明:據(jù)題意且x1<x2<x3,
由(1)知f (x1)>f (x2)>f (x3),
14′
即ㄓ是鈍角三角形. 18′
第Ⅱ部分 加試內(nèi)容
一.必答題:
1.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知 4′
(2)ξ可取1,2,3,4.
,
; 8′
故ξ的分布列為
ξ
1
2
3
4
P
答:ξ的數(shù)學(xué)期望為 10′
2.(1)由得,
求得 3′
(2)猜想 5′
證明:①當(dāng)n=1時(shí),猜想成立。 6′
②設(shè)當(dāng)n=k時(shí)時(shí),猜想成立,即, 7′
則當(dāng)n=k+1時(shí),有,
所以當(dāng)n=k+1時(shí)猜想也成立 9′
③綜合①②,猜想對(duì)任何都成立。 10′
二、選答題:
3.(1)∵DE2=EF?EC,
∴DE : CE=EF: ED.
∵ÐDEF是公共角,
∴ΔDEF∽ΔCED. ∴ÐEDF=ÐC.
∵CD∥AP, ∴ÐC=Ð P.
∴ÐP=ÐEDF.----5′
(2)∵ÐP=ÐEDF, ÐDEF=ÐPEA,
∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.
∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP. 10′
4.(矩陣與變換)
解:.
, 5′
橢圓在的作用下的新曲線的方程為 10′
5.(1)直線的參數(shù)方程為,即. 5′
(2)把直線代入,
得,,
則點(diǎn)到兩點(diǎn)的距離之積為.
10′
6.
7′
當(dāng)且僅當(dāng) 且
F有最小值 10′
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com