2009大連市高三雙基考試 查看更多

 

題目列表(包括答案和解析)

在某市日前進行的2009年高三第二次模擬考中,參加考試的2000名理科學(xué)生的數(shù)學(xué)成績在90—110分的人數(shù)為800人,統(tǒng)計結(jié)果顯示,理科學(xué)生的數(shù)學(xué)成績服從正態(tài)分布,則2000名理科學(xué)生的數(shù)學(xué)成績不低于110分的人數(shù)是      

查看答案和解析>>

(銀川一中2009屆高三年級第一次模擬考試)已知函數(shù).

(1)若;  

(2)求函數(shù)上最大值和最小值

查看答案和解析>>

 (北京市崇文區(qū)2009年3月高三統(tǒng)一考試?yán)?已知 ,則的值為 (   )

A.             B              C.               D.

查看答案和解析>>

 (北京市崇文區(qū)2009年3月高三統(tǒng)一考試?yán)?已知 ,則的值為 (   )

A.             B              C.               D.

查看答案和解析>>

某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100,110)的中點值為
100+1102
=105.)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;
(3)利用頻率分布表,計算樣本的眾數(shù),中位數(shù)(保留兩位有效小數(shù)).

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空題

13.   14.     15.7500    16.

三、解答題

17.證明:(Ⅰ)取AB的中點M,連FM,MC, ┅┅┅┅2分

∵ F、M分別是AE、BA的中點  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四邊形FMCD是平行四邊形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中點,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中點, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)實數(shù)對

共16種不同的情況,有16條不同的直線.┅┅┅┅┅┅┅4分

當(dāng)實數(shù)對時,直線的斜率,直線傾斜角大于

所以直線傾斜角大于的概率為;┅┅┅┅┅┅┅6分

(Ⅱ)直線在x軸上的截距與在y軸上截距之差,即,┅┅┅┅┅┅┅8分

當(dāng)實數(shù)對,┅┅┅┅┅┅┅10分

所以直線在x軸上的截距與在y軸上截距之差小于7的概率為. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因為,所以,所以

的取值范圍為 ┅┅┅┅┅┅┅6分

(Ⅱ)因為,所以 ┅┅┅┅┅┅┅8分

所以的最小值為,當(dāng)為等邊三角形時取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首項為,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差數(shù)列,首項為,公差為1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由題意可知,可行域是以及點為頂點的三角形,∵,∴為直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圓C以原點O為圓心,線段A1A2為直徑,故其方程為

2a=4,∴a=2.又,可得

∴所求圓C與橢圓C1的方程分別是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,設(shè),,

當(dāng)時,Q點為(),可得,∴PFOQ.

當(dāng)時,,可以解得,也有PFOQ.  ┅┅┅6分

當(dāng)時,OP的斜率為,則切線PQ的斜率為,則PQ的方程為:化簡為:,          ┅┅┅8分

交得Q點坐標(biāo)為             ┅┅┅10分

,

∴PFOQ.

綜上,直線PF與直線OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①當(dāng),即,在R上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅4分

②當(dāng),即,當(dāng)時,在上有,所以在R單調(diào)遞增;當(dāng)時,在上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅6分

③當(dāng),即

兩個根分別為,所以在上有,即單調(diào)遞增;

上有,即單調(diào)遞減.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知當(dāng)時函數(shù)有極值,

當(dāng)時,,所以不符合題意.

當(dāng)時,,此時函數(shù)的極值點都為正數(shù)

┅┅┅┅┅┅┅10分

有極大值,極小值,所以

,

又因為,

所以

=,┅┅┅┅┅┅┅12分

,則,所以單調(diào)遞增,所以,即極值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步練習(xí)冊答案