16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DCABD  ABC

二、填空題(每小題5 分,共35分)

9.     10.     11.91    12.②④

13.     14.(i)(2分)    (ii)(3分)

15.(i)(3分);    (ii) (2分)

  • <noscript id="4loil"><tbody id="4loil"></tbody></noscript>

      20090401

      ,2 分

      8,3 分

      解得;……………………4分分

      (2)

       ………………6分

      …………8分

      由余弦定理得

       ……………………10分

       …………………………12分

      17.解:(1)= 1 表示經(jīng)過(guò)操作以后A 袋中只有一個(gè)紅球,有兩種情形出現(xiàn)

      ①先從A 中取出1 紅和1 白,再?gòu)腂 中取一白到A 中

      ②先從A 中取出2 紅球,再?gòu)腂 中取一紅球到A 中

      …………………………(5分)

      (2)同(1)中計(jì)算方法可知:

      于是的概率分別列

      0

      1

      2

      3

      P

       

      E=……………………12分

      18.解:(1)AB//平面DEF. 在△ABC 中,

      ∵E、F分別是AC、BC 上的點(diǎn),且滿足

      ∴AB//EF.

      <noscript id="4loil"><tbody id="4loil"><noframes id="4loil"></noframes></tbody></noscript>

    1. ∴AB//平面DEF. …………3 分

      (2)過(guò)D點(diǎn)作DG⊥AC 于G,連結(jié)BG,

      ∵AD⊥CD, BD⊥CD,

      ∴∠ADB 是二面角A―CD―B 的平面角.

      ∴∠ADB = 90°, 即BD⊥AD.

      ∴BD⊥平面ADC.

      ∴BD⊥AC.

      ∴AC⊥平面BGD.

      ∴BG⊥AC .

      ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

      在Rt△ADC 中,AD = a,DC = a,AC = 2a,

      在Rt

      即二面角B―AC―D的大小為……………………8分

      (2)∵AB//EF,

      ∴∠DEF(或其補(bǔ)角)是異面直線AB 與DE 所成的角. ………………9 分

      ∵AB =,

      ∴EF=  ak .

      又DC = a,CE = kCA = 2ak,

      ∴DF= DE =

      ………………4分

      ∴cos∠DEF=………………11分

      …………………………12分

      19.解:(1)依題意建立數(shù)學(xué)模型,設(shè)第n 次服藥后,藥在體內(nèi)的殘留量為an(毫克)

      a1 = 220,a2 =220×1.4 ……………………2 分

      a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

      (2)由an = 220 + 0.4an―1 (n≥2 ),

      可得

      所以()是一個(gè)等比數(shù)列,

      不會(huì)產(chǎn)生副作用……………………13分

      20.解:(1)由條件知:

      ……………………2分

      b=1,

      ∴橢圓C的方程為:……………………4分

      (2)依條件有:………………5分

      …………7分

      ,

      ………………7分

      …………………………9分

      由弦長(zhǎng)公式得

          得

      =

       …………………………13分

      21.解:(1)當(dāng)

      上單調(diào)遞增,

      ……………………5分

      (2)(1),

      需求一個(gè),使(1)成立,只要求出

      的最小值,

      滿足

      上↓

      ↑,

      只需證明內(nèi)成立即可,

      為增函數(shù)

      ,故存在與a有關(guān)的正常數(shù)使(1)成立。13分

       


      同步練習(xí)冊(cè)答案