圖象與函數的圖象恰有三個交點.若存在.試出實數m 的值,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

函數f(x)=(x-2010)(x+2011)的圖象與x軸、y軸有三個交點,有一個圓恰好通過這三個點,則此圓與坐標軸的另一個交點是( 。
A、(0,1)
B、(0,
2010
2009
C、(0,
2011
2010
D、(0,
1
2

查看答案和解析>>

設函數f(x)=
x-[x],x≥0
f(x+1),x<0
,其中[X]表示不超過x的最大整數,如[-1.1]=-2,[π]=3等.若直線y=kx+k(k>0)與函數y=f(x)的圖象恰有三個不同的交點,則實數k的取值范圍是( 。

查看答案和解析>>

設函數 其中表示不超過的最大整數,如=-2,=1,=1,若直線y=與函數y=的圖象恰有三個不同的交點,則的取值范圍是

A.B.C.D.

查看答案和解析>>

設函數 其中表示不超過的最大整數,如=-2,=1,=1,若直線y=與函數y=的圖象恰有三個不同的交點,則的取值范圍是

A.     B.     C.      D. 

 

查看答案和解析>>

設函數其中表示不超過的最大整數,如=-2,=1,=1,若直線y=與函數y=的圖象恰有三個不同的交點,則的取值范圍是

A.    B.    C.     D. 

 

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DACDA  DBA

二、填空題(每小題5 分,共35分)

9.     10.400     11.180    12.②④

13.     14.(i)(3分)    (ii)(2分)

15.(i)(3分);    (ii) (2分)

16.(1)

 ……………………4分

(2)令 ………………6分

解得:

所以,的單調遞增區(qū)間是…………8分

(3)由,……………………10分

所以,

解得:

所以,的取值集合……12分

17.解:(1)坐A 班車的三人中恰有2 人正點到達的概率為

P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)

(2)記“A 班車正點到達”為事件M,“B 班車正點到達冶為事件N

則兩人中至少有一人正點到達的概率為

P = P(M?N)+ P(M?)+ P(?N)

= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)

18.解:由已知得

所以數列{}是以1為首項,公差為1的等差數列;(2分)

=1+…………………………4分

(2)由(1)知 ……………………6分

 …………………………8分

 ……………………10分

所以:…………………………12分

19.解:M、N、Q、B的位置如右圖示。(正確標出給1分)

(1)∵ND//MB且ND=MB

∴四邊形NDBM為平行四邊形

∴MN//DB………………3分

∴BD平面PBD,MN

∴MN//平面PBD……………………4分

(2)∵QC⊥平面ABCD,BD平面ABCD,

∴BD⊥QC……………………5分

又∵BD⊥AC,

∴BD⊥平面AQC…………………………6分

∵AQ面AQC

∴AQ⊥BD,同理可得AQ⊥PB,

∵BDPD=B

∴AQ⊥面PDB……………………………8分

    1. <label id="welsa"><button id="welsa"></button></label>
      1. ∵在正方體中,PB=PB

        ∴PE⊥DB……………………10分

        ∵四邊形NDBM為矩形

        ∴EF⊥DB

        ∴∠PEF為二面角P―DB―M為平面角………………11分

        ∵EF⊥平面PMN

        ∴EF⊥PF

        設正方體的棱長為a,則在直角三角形EFP中

        …………………………13分

        解法2:設正方體的棱長為a,

        以D為坐標原點建立空間直角坐標系如圖:

        則點A(a,0,0),P(a,0,a),Q(0,a,a)…………9分

        ………………10分

        ∵PQ⊥面DBM,由(2)知AQ⊥面PDB

        分別為平面PDB、平面DBM的法向量

        ……………………12分

        ………………13分

        20.解:(1)由題意,可設橢圓的標準方程為……1分

        的焦點為F(1,0)

        ……………………3分

        所以,橢圓的標準方程為

        其離心率為 ……………………5分

        (2)證明:∵橢圓的右準線1的方程為:x=2,

        ∴點E的坐標為(2,0)設EF的中點為M,則

        若AB垂直于x軸,則A(1,y1),B(1,-y1),C(2,-y1

        ∴AC的中點為

        ∴線段EF的中點與AC的中點重合,

        ∴線段EF被直線AC平分,…………………………6分

        若AB不垂直于x軸,則可設直線AB的方程為

        …………………………7分

        ………………8分

        則有………………9分

        ……………………10分

        ∴A、M、C三點共線,即AC過EF的中點M,

        ∴線段EF被直線AC平分。………………………………13分

        21.解:(1)依題意,

        …………………………3分

        (2)若在區(qū)間(―2,3)內有兩個不同的極值點,則方程在區(qū)間(―2,3)內有兩個不同的實根,

        但a=0時,無極值點,

        ∴a的取值范圍為……………………8分

        (3)在(1)的條件下,a=1,要使函數的圖象恰有三個交點,等價于方程,

        即方程恰有三個不同的實根。

        =0是一個根,

        *        應使方程有兩個非零的不等實根,

        ………………12分

        *存在的圖象恰有三個交點…………………………13分

         


        同步練習冊答案