2.設(shè)函數(shù)在區(qū)間上是增函數(shù).則的取值范圍是 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)數(shù)學(xué)公式在區(qū)間[1,3]上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是


  1. A.
    (-∞,-3]
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    (-∞,-3]∪數(shù)學(xué)公式

查看答案和解析>>

(09年湖北八校聯(lián)考文)設(shè)函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是(    )

A.  B.  C.   D.

查看答案和解析>>

設(shè)函數(shù)f(x)=lg(x2+ax-a-1),給出如下命題:
①函數(shù)f(x)必有最小值;
②若a=0時,則函數(shù)f(x)的值域是R;
③若a>0,且f(x)的定義域?yàn)閇2,+∞),則函數(shù)f(x)有反函數(shù);
④若函數(shù)f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-4,+∞).
其中正確的命題序號是
 
.(將你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

設(shè)函數(shù)f(x)=-x3+bx(b為常數(shù)),若方程f(x)=0的根都在區(qū)間[-2,2]內(nèi),且函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,則b的取值范圍是
 

查看答案和解析>>

設(shè)函數(shù)f(x)=lg(x2+ax-a-1),給出下述命題:
①函數(shù)f(x)的值域?yàn)镽;
②函數(shù)f(x)有最小值;
③當(dāng)a=0時,函數(shù)f(x)為偶函數(shù);
④若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍a≥-4.
正確的命題是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

一、             

二、11.210      12.         13.2    14.         15.

三.解答題:

16. 解:(1)

……………………………………………………………3分

由題意得周期,故…………………………………………4分

又圖象過點(diǎn),所以

,而,所以

……………………………………………………6分

(2)當(dāng)時,

∴當(dāng)時,即時,是減函數(shù)

當(dāng)時,即時,是增函數(shù)

∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是………………12分

17.解:記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、、,則,且有,即

……………………………………………………………………6分

(2)由(1),.

則甲、乙、丙三人中恰有兩人回答對該題的概率為:

……………………12分

18. 解法一 公理化法

(1)當(dāng)時,取的中點(diǎn),連接,因?yàn)?sub>為正三角形,則,由于的中點(diǎn)時,

平面,∴平面,∴.………………………………………………4分

(2)當(dāng)時,過,如圖所示,則底面,過,連結(jié),則,為二面角的平面角,

,

,

,即二面角的大小為.…………………………………………………8分

(3)設(shè)到面的距離為,則,平面,

即為點(diǎn)到平面的距離,

解得,

到平面的距離為.…………………………………………………………………………12分

解法二 向量法

為原點(diǎn),軸,過點(diǎn)與垂直的直線為軸,軸,建立空間直角坐標(biāo)系,如圖所示,

設(shè),則

(1)由,

,

,………………………………4分

(2)當(dāng)時,點(diǎn)的坐標(biāo)是

設(shè)平面的一個法向量,則

,則,

又平面的一個法向量為

又由于二面角是一個銳角,則二面角的大小是.……………………8分

(3)設(shè)到面的距離為,

到平面的距離為.………………………………………………………………………12分

19. 解:(Ⅰ)由于

故在點(diǎn)處的切線方程是…………………………………………2分

,故表示同一條直線,

,,.……6分

(Ⅱ) 由于

,所以函數(shù)的單調(diào)區(qū)間是,…………………………8分

 

,

實(shí)數(shù)的取值范圍是.………………………………………………………12分

20. 解:(Ⅰ)設(shè)過與拋物線的相切的直線的斜率是

則該切線的方程為:

,

都是方程的解,故………………………………………………4分

(Ⅱ)設(shè)

由于,故切線的方程是:,又由于點(diǎn)在上,則

,同理

則直線的方程是,則直線過定點(diǎn).………………………………………8分

(Ⅲ)要使最小,就是使得到直線的距離最小,

到直線的距離,當(dāng)且僅當(dāng)時取等號.………………………………………………………………10分

設(shè)

,則

.…………13分

21. 解:(Ⅰ)由題意知……1分

 …………3分

檢驗(yàn)知時,結(jié)論也成立

.………………………………………………………………………………4分

(Ⅱ) ①由于

………………………………………………9分

②若,其中,則有,則,

(其中表示不超過的最大整數(shù)),則當(dāng)時,. ………………………………………………………14分

 

 

 


同步練習(xí)冊答案