計(jì)算得.并且計(jì)算得到線性回歸方程為 查看更多

 

題目列表(包括答案和解析)

物理學(xué)家JamesDForbes試圖通過(guò)水的沸點(diǎn)來(lái)估計(jì)海拔高度,他知道通過(guò)氣壓計(jì)測(cè)得的大氣壓可用于得到海拔高度,氣壓越低,高度越高,他測(cè)量了17個(gè)地方水的沸點(diǎn)(℉)及大氣壓數(shù)據(jù),并且對(duì)數(shù)據(jù)作了簡(jiǎn)單的處理,得到了較為明確的數(shù)學(xué)關(guān)系,所提數(shù)據(jù)如下:


測(cè)點(diǎn)編號(hào)

沸點(diǎn)(℉)

氣壓

1g(氣壓)

100´1g(氣壓)

1

194.5

20.79

1.3179

131.79

2

194.3

20.79

1.3179

131.79

3

197.9

22.40

1.3502

135.02

4

198.4

22.67

1.3555

135.55

5

199.4

23.15

1.3646

136.46

6

199.9

23.35

1.3683

136.83

7

200.9

23.89

1.3782

137.82

8

201.1

23.99

1.3800

138.00

9

201.4

24.02

1.3805

138.05

10

201.3

24.01

1.3806

138.06

11

203.6

25.14

1.4004

140.04

12

204.6

26.57

1.4244

142.44

13

209.5

28.49

1.4547

145.47

15

208.6

27.76

1.4434

144.34

15

210.7

29.04

1.4630

146.30

16

211.9

29.88

1.4754

147.54

17

212.2

30.06

1.4780

147.80

1)試作出氣壓y=100´1g(氣壓)關(guān)于沸點(diǎn)(℉)的散點(diǎn)圖;

2)根據(jù)散點(diǎn)圖判斷變量xy的相關(guān)關(guān)系;計(jì)算變量xy的相關(guān)系數(shù);

3)建立變量xy的一元線性回歸方程。

查看答案和解析>>

物理學(xué)家JamesDForbes試圖通過(guò)水的沸點(diǎn)來(lái)估計(jì)海拔高度,他知道通過(guò)氣壓計(jì)測(cè)得的大氣壓可用于得到海拔高度,氣壓越低,高度越高,他測(cè)量了17個(gè)地方水的沸點(diǎn)(℉)及大氣壓數(shù)據(jù),并且對(duì)數(shù)據(jù)作了簡(jiǎn)單的處理,得到了較為明確的數(shù)學(xué)關(guān)系,所提數(shù)據(jù)如下:


測(cè)點(diǎn)編號(hào)

沸點(diǎn)(℉)

氣壓

1g(氣壓)

100´1g(氣壓)

1

194.5

20.79

1.3179

131.79

2

194.3

20.79

1.3179

131.79

3

197.9

22.40

1.3502

135.02

4

198.4

22.67

1.3555

135.55

5

199.4

23.15

1.3646

136.46

6

199.9

23.35

1.3683

136.83

7

200.9

23.89

1.3782

137.82

8

201.1

23.99

1.3800

138.00

9

201.4

24.02

1.3805

138.05

10

201.3

24.01

1.3806

138.06

11

203.6

25.14

1.4004

140.04

12

204.6

26.57

1.4244

142.44

13

209.5

28.49

1.4547

145.47

15

208.6

27.76

1.4434

144.34

15

210.7

29.04

1.4630

146.30

16

211.9

29.88

1.4754

147.54

17

212.2

30.06

1.4780

147.80

1)試作出氣壓y=100´1g(氣壓)關(guān)于沸點(diǎn)(℉)的散點(diǎn)圖;

2)根據(jù)散點(diǎn)圖判斷變量xy的相關(guān)關(guān)系;計(jì)算變量xy的相關(guān)系數(shù);

3)建立變量xy的一元線性回歸方程。

查看答案和解析>>

科研室的老師為了研究某班學(xué)生數(shù)學(xué)成績(jī)x與英語(yǔ)成績(jī)y的相關(guān)性,對(duì)該班全體學(xué)生的某次期末檢測(cè)的數(shù)學(xué)成績(jī)和英語(yǔ)成績(jī)進(jìn)行統(tǒng)計(jì)分析,利用相關(guān)系數(shù)公式r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2
,計(jì)算得r=-0.001,并且計(jì)算得到線性回歸方程為y=bx+a,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
.由此得該班全體學(xué)生的數(shù)學(xué)成績(jī)x與英語(yǔ)成績(jī)y相關(guān)性的下列結(jié)論正確的是( 。

查看答案和解析>>

科研室的老師為了研究某班學(xué)生數(shù)學(xué)成績(jī)x與英語(yǔ)成績(jī)y的相關(guān)性,對(duì)該班全體學(xué)生的某次期末檢測(cè)的數(shù)學(xué)成績(jī)和英語(yǔ)成績(jī)進(jìn)行統(tǒng)計(jì)分析,利用相關(guān)系數(shù)公式r=,計(jì)算得r=-0.001,并且計(jì)算得到線性回歸方程為y=bx+a,其中b=,a=.由此得該班全體學(xué)生的數(shù)學(xué)成績(jī)x與英語(yǔ)成績(jī)y相關(guān)性的下列結(jié)論正確的是( )
A.相關(guān)性較強(qiáng)且正相關(guān)
B.相關(guān)性較弱且正相關(guān)
C.相關(guān)性較強(qiáng)且負(fù)相關(guān)
D.相關(guān)性較弱且負(fù)相關(guān)

查看答案和解析>>

科研室的老師為了研究某班學(xué)生數(shù)學(xué)成績(jī)x與英語(yǔ)成績(jī)y的相關(guān)性,對(duì)該班全體學(xué)生的某次期末檢測(cè)的數(shù)學(xué)成績(jī)和英語(yǔ)成績(jī)進(jìn)行統(tǒng)計(jì)分析,利用相關(guān)系數(shù)公式r=,計(jì)算得r=-0.001,并且計(jì)算得到線性回歸方程為y=bx+a,其中b=,a=.由此得該班全體學(xué)生的數(shù)學(xué)成績(jī)x與英語(yǔ)成績(jī)y相關(guān)性的下列結(jié)論正確的是( )
A.相關(guān)性較強(qiáng)且正相關(guān)
B.相關(guān)性較弱且正相關(guān)
C.相關(guān)性較強(qiáng)且負(fù)相關(guān)
D.相關(guān)性較弱且負(fù)相關(guān)

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

A

B

C

D

A

D

C

C

D

B

二、填空題(每小題5分,共20分)

13、(1,2); 14、20; 15、21;16、

三、解答題

17、解:(Ⅰ)當(dāng)時(shí),有,又,所以 ……1分

當(dāng)時(shí),

           =

         

         所以,且當(dāng)時(shí),  ……3分

,因此數(shù)列{}是以1為首項(xiàng)

且公差為2的等差數(shù)列,所以  ……2分

(Ⅱ)證明:(1)當(dāng)時(shí),,,關(guān)系成立 ……1分

 (2)假設(shè)當(dāng)時(shí),關(guān)系成立,即,則

   ……1分  那么

   ,即當(dāng)時(shí)關(guān)系也成立

……3分  根據(jù)(1)和(2)知,關(guān)系式對(duì)任意N*都成立  ……1分

18、解:(Ⅰ)如圖,以C為原點(diǎn),CA,CB,CC1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,,

,,  ……1分

設(shè),則,,

即AM⊥BC,又因?yàn)?sub>,且

所以 AM^平面  ……3分

(Ⅱ),因?yàn)?sub>,所以,得,

,可得平面的一個(gè)法向量為=  ……3分

,設(shè)平面的一個(gè)法向量為

,得,令,得平面的一個(gè)法向量為=  ……3分設(shè)平面ABM與平面AB1C1所夾銳角為,

  ……2分

19、解:(Ⅰ)隨機(jī)變量甲、乙兩名運(yùn)動(dòng)員選擇的泳道相隔數(shù)X的分布列為:

X

0

1

2

3

4

5

6

     ……6分

泳道相隔數(shù)X的期望為:

E(X)= ……2分

(Ⅱ)  ……4分

20、解:(Ⅰ)由  ……2分

可得直線的方程為,于是,

,,,所以橢圓的方程為  ……2分

(Ⅱ)設(shè),由方程組

      所以有,,且,即 ……2分

    

            ……2分

     因?yàn)?sub>,所以,又,所以是線段的中點(diǎn),

     點(diǎn)的坐標(biāo)為,即的坐標(biāo)是,因此

     直線的方程為,得點(diǎn)的坐標(biāo)為(0,),

     所以   ……2分

    因此

    所以當(dāng),即時(shí),取得最大值,最大值為 ……2分

21、解:(Ⅰ)

                     ……2分

,則,為R上的單調(diào)遞增函數(shù);

,的解為,的解為,

此時(shí)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減;

的解為,的解為,

此時(shí)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減……3分

(Ⅱ)當(dāng)時(shí),,

因?yàn)?sub>,所以點(diǎn)(0,)不在曲線上,設(shè)過(guò)點(diǎn)的直線與曲線相切于點(diǎn),則切線方程為,所以有

,得……2分 令

,

,得,,可得在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減,所以時(shí)取極大值,

時(shí)取極小值,在時(shí)取極大值,又,

所以的最大值 ……3分 

如圖,過(guò)點(diǎn)(0,)有且只有一條直線與曲線

相切等價(jià)于直線與曲線

有且只有一個(gè)交點(diǎn),又當(dāng)時(shí),,所以  ……2分

22、(Ⅰ)證明:因?yàn)锳B為⊙O直徑,

所以 ∠ACB=90°,即 AC⊥BC,

因?yàn)镈是弧的中點(diǎn),由垂徑定理

得OD⊥BC,因此OD∥AC  ……3分

又因?yàn)辄c(diǎn)O為AB的中點(diǎn),所以點(diǎn)E為

BC的中點(diǎn),所以O(shè)E=AC  ……2分

(Ⅱ)證明:連結(jié)CD,因?yàn)镻C是⊙O的切線,所以∠PCD=∠CAP,又∠P是公共角,所以 △PCD∽△PAC.得,得 ……3分

因?yàn)镈是弧的中點(diǎn),所以,因此   ……2分

23、解:(Ⅰ)曲線上的動(dòng)點(diǎn)的坐標(biāo)為(),坐標(biāo)原點(diǎn)(0,0),

     設(shè)P的坐標(biāo)為(,),則由中點(diǎn)坐標(biāo)公式得,,所以點(diǎn)P 的坐標(biāo)為(,)……3分

      因此點(diǎn)的軌跡的參數(shù)方程為為參數(shù),且),

消去參數(shù)得點(diǎn)軌跡的直角坐標(biāo)方程為 ……2分

(Ⅱ)由直角坐標(biāo)與極坐標(biāo)關(guān)系得直線的直角坐標(biāo)方程為

  ……2分 又由(Ⅰ)知點(diǎn)的軌跡為圓心在原點(diǎn)半徑為2的圓,

因?yàn)樵c(diǎn)(0,0)到直線的距離為

所以點(diǎn)到直線距離的最大值  ……3分

24、解:(Ⅰ)由題意得,即  得 ……2分

     因?yàn)?sub> 

所以的取值范圍是[0,6]   ……3分

(Ⅱ),

因?yàn)閷?duì)于,由絕對(duì)值的三角不等式得

   ……3分

于是有,得,即的取值范圍是  ……2分

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案