題目列表(包括答案和解析)
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD? (14分)
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD? (14分)
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,
E、F分別是AC、AD上的動(dòng)點(diǎn),且
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD? (14分) w.w.w.k.s.5.u.c.o.m
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">
又是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點(diǎn)評(píng)】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD平面PAC即可,第二問(wèn)由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
如圖,在三棱錐中,平面平面,,,,為中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為中點(diǎn),所以
而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系得,,,,,,
故平面的法向量而,故點(diǎn)B到平面的距離
第二問(wèn)中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為中點(diǎn),所以
而平面平面,所以平面,
再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系,得,,,,
,,故平面的法向量
而,故點(diǎn)B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com