題目列表(包括答案和解析)
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.
(Ⅰ)求證:點為棱的中點;
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知,面。由此知:從而有又點是的中點,所以,所以點為棱的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點作于點,取的中點,連。面面且相交于,面內(nèi)的直線,面!3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點是的中點,所以,所以點為棱的中點. …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點C的軌跡方程;
(Ⅱ)設(shè)頂點C的軌跡為D,已知直線過點(0,1)并且與曲線D交于P、N兩點,若O為坐標(biāo)原點,滿足OP⊥ON,求直線的方程.
【解析】
第一問因為設(shè)C(x,y)()
……3分
∵M是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)
由(1)(2)得.所以三角形頂點C的軌跡方程為,.…6分
第二問直線l的方程為y=kx+1
由消y得。 ∵直線l與曲線D交于P、N兩點,∴△=,
又,
∵,∴
得到直線方程。
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個交點為.
(1)當(dāng)時,求橢圓的方程;
(2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;
(3)由拋物線弧和橢圓弧
()合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個交點為.
(1)當(dāng)時,求橢圓的方程;
(2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;
(3)由拋物線弧和橢圓弧
()合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
如圖1,,是某地一個湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤。為觀光旅游的需要,擬過棧橋上某點分別修建與,平行的棧橋、,且以、為邊建一個跨越水面的三角形觀光平臺。建立如圖2所示的直角坐標(biāo)系,測得線段的方程是,曲線段的方程是,設(shè)點的坐標(biāo)為,記。(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度)
(1)求的取值范圍;
(2)試寫出三角形觀光平臺面積關(guān)于的函數(shù)解析式,并求出該面積的最小值
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com